
Software Design Document: A002 July 11, 1994
Version Description Document: A005 July 11, 1994

Next Generation Intrusion Detection Expert System (NIDES)
Software Design, Product Specification, and Version
Description Document

SRI Project 3131
Contract N00039-92-C-0015

Debra Anderson, Computer Science Laboratory
Thane Frivold, System Technology Division
Ann Tamaru, Computer Science Laboratory
Alphonso Valdes, Applied Electromagnetics and Optics Laboratory

Prepared for:

Department of the Navy
Space and Naval Warfare Systems Command
2451 Crystal Drive
Arlington, VA 22245-5200
Attn: SPAWAR, PD51E2, Mr. Robert Patton

SPAWAR, 02-22D
NRaD, Code 412
NRL, Code 5540
NSA, R23

333 Ravenswood Avenue l Menlo Park, CA 94025-3493 (415)326-6200 FAX: (415) 326-5512 Telex: 334486

Contents

1 Scope 1

2 Prototype Design 3
2.1 Architecture . 3

2.1.1 Core Components . 3
2.1.2 Infrastructural Components . 4

2.2 Component Integration . 6
2.2.1 UI Server . 6
2.2.2 Analysis Server . 9
2.2.3 Arpool Server . 9

3 Detailed Design 11
3.1 Infrastructural Components . 11

3.1.1 Process Management Component . 11
3.1.2 Inter-Process Communication Component 11

3.1.2.1 Client-side Routines . 11
3.1.2.2 Server-side Routines . 12
3.1.2.3 XDR Routines . 13

3.1.3 Persistent Storage Component . 15
3.1.3.1 Persistent Storage Facility 15
3.1.3.2 Data Management Facility 19

3.1.4 Graphical User-Interface Component 23
3.2 Audit-Data Generation Component . 24

3.2.1 Audit Data Gathering . 24
3.2.2 Audit-Data Conversion . 25
3.2.3 Data Structures . 25

3.3 Audit-Data Collection Component . 26
3.4 Statistical Component . 28

3.4.1 Algorithm Summary . 28
3.4.2 Data Structures . 30

3.4.2.1 Profiles . 30
3.4.2.2 Activity Data . 34
3.4.2.3 Configuration Data . 35

3.4.3 Functional Interfaces . 37
3.5 Rulebased Component . 40

3.5.1 Functionality . 41
3.5.2 Data Structures . 42
3.5.3 Functional Interfaces . 44

3.6 Resolver Component . 46
3.7 User Interface Component . 47
3.8 Audit Generation Service . 52

ii NIDES Software Design Document

3.8.1 Data Structures . 52
3.8.2 Functional Interfaces . 52

3.9 Audit Collection Service . 53
3.9.1 Data Structures . 53
3.9.2 Functional Interfaces . 53

3.10 Analysis Service . 54
3.10.1 Statistical client . 54
3.10.2 Rulebased client . 55

3.11 Security Officer User Interface Service . 55
3.11.1 Data Structures . 56
3.11.2 Functional Interfaces . 57
3.11.3 Agents. 58
3.11.4 Agent Interfaces . 61

4 Data Files

5 Requirements Traceability

6 Differences between NIDES Beta and Alpha Prototypes

A NIDES Audit Record Format Description
A.1 Structure of the NIDES Audit Record .
A.2 Mark Structure .
A.3 Reading and Writing Audit Records .

63

65

67

69
69
74
74

Glossary

References

75

79

July 1994
. . .
111

List of Figures

1 Core Component Dependencies . 5

2 Client/Server Graph . 7

July 1994 1

1 Scope

The purpose of NIDES (Next Generation Intrusion Detection System) is to detect intru-
sive and suspicious activities on computer systems in real time. Audit data, representing
computer system activity of individual subjects, is collected by NIDES from one or more
systems (known as target hosts), both statistical and rulebased analysis of the audit data
is continuously performed, and the results are resolved and reported to a graphical user
interface.

This document, which provides a comprehensive description of the NIDES prototype
software, is organized as follows. Section 2 presents an overview of the NIDES prototype,
including a description of the prototype architecture, execution control, data flow, and re-
source requirements. It also discusses the prototype design description in terms of core and
infrastructural components and their embodiments as processes. Section 3 describes each of
the core and infrastructural components and the processes that embody them.

Section 4 describes the data files that are used by one or more components. Section 5
shows how the requirements allocated to components meet the requirements of the prototype
itself. Section 6 highlights the essential differences between the NIDES beta prototype and
the NIDES alpha prototype. The Appendix contains a description of the NIDES audit record
format. A glossary of terms and a list of references is also included.

2 NIDES Software Design Document

July 1994 3

2 Prototype Design

The NIDES prototype monitors activities on multiple target hosts and reports any anomalous
or suspicious activities as they occur to a security officer.

The prototype has two external interfaces:

1. Audit and accounting files on target hosts that are created by resident Sun OS
C2/BSM1 auditing and UNIX accounting daemons (system processes) under a pre-
determined directory on the file system on the target host.

2. An X/Motif-based graphical user-interface display that allows the security officer to
observe anomalous and suspicious activities and to manage the operation of the NIDES
prototype. Anomalous and suspicious activities can also be reported using electronic
mail.

2.1 Architecture

The underlying software design approach of the prototype is based on the spiral life-cycle
method. In this method, a prototype is viewed as developing �building blocks� to be used
by subsequent prototypes.

At the highest level of abstraction, the prototype is a dependency graph2 of core com-
ponents. Each core component depends on a set of infrastructural components. Each core
component has well-defined interfaces � namely, functions that hide the specific details of
the component implementation from other core components that depend on it. Similarly,
each infrastructural component has well-defined interfaces that decouple the component�s
use from its internals.

2.1.1 Core Components

The core components of the NIDES prototype, shown in the dependency graph of Figure 1,
are:

 Audit-data generation component

 Audit-data collection component

 Statistical analysis component

 Rulebased analysis component

 Resolver component
1All product names mentioned in this document are the trademarks of their respective holders.
2A directed edge in a dependency graph, from component A to component B, means that component B

depends on component A.

4 NIDES Software Design Document

 Archiver component

 User interface component

The audit-data generation component generates NIDES format audit records of subject
(user) activities on a target system from SunOS BSM, SunOS C2, and standard UNIX
accounting audit data. It is capable of being remotely started, stopped, and monitored.

The audit-data collection component is capable of gathering audit data generated by
multiple target hosts as it is generated, provided the amount of audit data being generated
is reasonable. This component guarantees that an audit record will be disposed of only after
it has been processed by each of the analysis components (statistical and rulebased).

The statistical component detects unusual activity, which may be indicative of mas-
querading users.

The rulebased component detects �well-known� types of intrusive, suspicious, or non-
authorized user behavior.

The resolver component analyzes the alerts issued by the statistical and rulebased com-
ponents and reports only significant, non-redundant alerts.

The archiver component archives NIDES audit records into a structured set of archive
files.

The user interface component enables the following.

1. Real-time operation of NIDES, including displaying and reporting of alerts, selecting
target hosts to be monitored, reporting status of monitored target hosts, dynamic re-
configuration of statistical parameters, dynamic control of individual rules, and display
of archived alerts and NIDES audit records

2. Processing of previously recorded NIDES audit data for after-the-fact analysis, exper-
imentation, and configuration tailoring

The user interface component depends on the resolver component for obtaining alerts,
on the audit-data collection component for obtaining the status of audit-data generation on
various target host systems, and on the audit-data generation component for initiation and
termination of audit-data generation. The resolver component depends on the statistical
and rulebased components for their respective analyses which, in turn, depend on the audit-
data collection component for audit-data records. The archiver component depends on the
audit-data collection component. The audit-data collection component obtains audit data
from the various audit-data generation components.

2.1.2 Infrastructural Components

The infrastructural components for realizing each core component of the NIDES prototype
are

 Process management component

July 1994 5

6 NIDES Software Design Document

 Inter-process communication component

 Persistent storage component

 Graphical user-interface component

The process management component manages the execution and interaction of core com-
ponents. Each core component is encapsulated in a process. Interaction between core com-
ponents encapsulated in processes is realized using inter-process communication.

The model of process management used is the client/server model of distributed comput-
ing. Each process can be either a client or a server but not both. A client process is active
� it initiates interaction with a server process. A server process is reactive � it responds
to interaction initiated by one or more client processes.

Inter-process communication is implemented using the remote procedure call (RPC)
mechanism. RPC uses an external data representation (XDR) of messages between pro-
cesses to accommodate heterogeneity in the underlying hardware. Server processes export
procedures that can be remotely invoked by clients. Both synchronous and asynchronous
RPC are provided to be used as appropriate. Synchronous RPC means that the remote pro-
cedure call will be �atomically� executed, whereas asynchronous RPC means that the act of
remote procedure invocation and the act of return from the procedure can be interleaved by
other activities, including other remote procedure calls. This is strictly under server control
and is transparent to clients.

The persistent storage component provides a storage-independent way of storing and
retrieving any internal data structure that is pertinent to the various core components. For
the NIDES prototype, the persistent storage facility is implemented using Sun�s Network
File System (NFS).

The graphical user-interface facility, based on X/Motif, provides a location-independent
window-based interface.

2.2 Component Integration

The core components are integrated by the infrastructural components.
The NIDES prototype is a collection of servers and clients, as shown in Figure 2. There

are three servers: UI, Analysis, and Arpool.

2.2.1 UI Server

The UI server is designed to be a server for both RPCs (issued by its clients) and �X events�
(issued by the X display). It is important that all servers, and especially the UI server, not
be indefinitely blocked. The strict client/server model allows blocking to be avoided. The
UI server is supported by seven clients, which we generically refer to as agents.

 Agent agent_status is responsible for obtaining the status and audit record counts
for active target systems from arpool. Target status is obtained from the Arpool

July 1994 7

Figure 2: Client/Server Graph

8 NIDES Software Design Document

server with the arpool_get_status() RPC and is reported to the UI server with the
put_status RPC.

 In the alpha version of NIDES, agent agent_alerts was responsible only for transferring
alerts from the analysis server to the UI server. In the beta version of NIDES, the role
of agent-alerts has expanded to support two-way communication between the analysis
server and the UI server.

Information sent from the UI server to the analysis server includes alert filtering, real-
time analysis reconfiguration, and manual profile update requests. Information sent
from the analysis server to the UI server includes alert reports, alert statistics for
individual target hosts, and reconfiguration status.

Alert filtering is obtained from the UI server with the get_alert_filter_list()
RPC and is reported to the analysis server with the put_alert_fiIter_list()
RPC. Real-time analysis reconfiguration is obtained from the UI server with the
get_realtime_reconfig() RPC and is reported to the analysis server with the
put_reconfig() RPC. Manual profile update requests are obtained from the UI server
with the get_stats_client_update_list() RPC and are reported to the analysis
server with the put_stats_update_list() RPC. Alert reports are obtained from the
analysis server with the get_alerts() RPC and are reported to the U1 server with the
put_alert() RPC. Alert statistics for individual target hosts are obtained from the
analysis server with the get_alert_stats() RPC and are reported to the UI server
with the put_alert_stats() RPC. Reconfiguration status is obtained from the analy-
sis server with the get_reconfig_status () RPC and is reported to the UI server with
the put_client_reconfig_status() RPC.

 Agent agent_server is responsible for starting and stopping the analysis processes
namely, the arpool and analysis servers. Start and stop requests are obtained from
the UI server with the get_control_server() RPC. Status and error information
concerning a request is reported to the UI server with the put_server_error RPC.

 Agent agent_target is responsible for processing requests to start and stop the audit gen-
eration process on target hosts namely, agen. Start and stop requests are obtained
from the UI server with the get_control_target () RPC. Status and error information
concerning a request is reported to the UI server with the put_target_error RPC.
The actual starting and stopping of audit generation activity on a target system is
performed by a target hosts server namely, agend.

 Agent agent_save is responsible for starting and stopping the audit record archive
processes namely, archiver. Start and stop requests are obtained from the UI server
with the get_ar_control_storage() RPC. Status and error information concerning a
request is reported to the UI server with the ar_storage_error() RPC.

July 1994 9

 Agent agent_email is responsible for issuing e-mail alerts. Alert messages and a list of
recipients are obtained from the UI server with the email_alert () RPC. There is no
mechanism to report errors.

 Agent agent_batch is responsible for initiating NIDES tests with archived audit data.
Test parameters are obtained from the U1 server with the get_start_test_analysis()
RPC. Status and error information concerning a request is reported to the UI server
with the test_analysis_status() RPC.

2.2.2 Analysis Server

The analysis server provides RPC interfaces for both agent_alerts and the analy-
sis components namely, the statistical client and the rulebased client. The
agent interface includes the get_alerts(), put_alert_filter_list(), put_reconfig(),
put_stats_update_list(), get_alert_stats(), and get_reconfig_status() RPCs de-
scribed above.

The statistical client reports the results of statistical analysis with the
put_stats_results() RPC to the analysis server. Similarly, the rulebased client reports
the results of rulebased analysis with the put_rulebase_results() RPC to the analysis
server. In addition, the statistical and rulebased clients make use of the persistent storage
facility to store statistical and rulebased information (see Section 2.1.2).

2.2.3 Arpool Server

The arpool server provides RPC interfaces for agent_status, both statistical and rulebased
clients, and the audit data generating clients namely, agen.

The agent interface includes the arpool_get_status() RPC described above.
The statistical and rulebased clients obtain NIDES audit records from the arpool server

with the arpool_get_ar_vec() RPC. The arpool server retains each audit record until all
currently active clients have retrieved the record.

The agen processes running on multiple target systems report NIDES audit records to
the arpool server with the arpool_put_ar_vec() RPC.

10 NIDES Software Design Document

July 1994 11

3 Detailed Design

Our description of the NIDES prototype first considers the infrastructural components, and
then defines each core component and its implementation using the client/server model.

3.1 Infrastructural Components

3.1.1 Process Management Component

The process management component is realized using the client/server model. A description
of this model can be found in Sun�s Networking Programming Guide [7].

3.1.2 Inter-Process Communication Component

The Inter-process communication is based primarily on Remote Procedure Calls, similar to
those defined by Sun with the rpcgen 3 tool. Our RPC tool arpcgen supports many more
features than Sun�s tool, and accepts ANSI C, rather than Sun�s RPC Language.

The arpcgen tool takes as input ANSI C data-type declarations and function prototypes
(usually a ".h" header file) and generates three C files: client-side RPC stubs, server-side
RPC stubs, and XDR routines.

The generated code makes use of functions in the arpc library, which can be similarly
grouped into client side, server side, and XDR routines.

3.1.2.1 Client-side Routines The client-side routines are as follows:

Status ipc_clnt_open(IPC *ipc, const char *name)
Opens a connection to server name. The resulting connection specifier is written into
*ipc.

Status ipc_clnt_close(IPC ipc)
Closes a connection opened with ipc_clnt_open().

IPC ipc_set_server(IPC server)
Specifies the server to be used in subsequent RPC calls. It returns the old server
handle.

Status ipc_onfail(IPC who, void (*what)(IPC, void *), void *arg)
Specifies an error handling function for the connection who. If an error occurs while
talking to who, the function *what is called with who and arg as arguments.

3See the Sun Network Programming Guide [7], pp 33-146.

12 NIDES Software Design Document

3.1.2.2 Server-side Routines The server-side routines are as follows:

void ipc_svc_dispatch(IPC from)
Produced by arpcgen in the server-side stubs; it decodes an incoming RPC and calls the
corresponding server function. Typically, ipc_src_dispatch is passed to ipc_svc_init.

Status ipc_svc_init(const char *name, void (*svc)(IPC))
Initializes a server, registering it as name with the name server and using svc as the
service dispatch routine (usually ipc_svc_dispatch).

int ipc_svc_run (int poll)
Handles incoming RPCs, using the previously specified dispatch routine (argument to
ipc_svc_init). If poll is false (zero), it runs forever waiting for incoming RPCs calls
and never returns. If poll is true (non-zero), it services at most one pending RPC
from each client and returns without blocking. In this case, it returns true if there are
more pending RPCs, or false if not.

void ipc_svc_close(IPC who)
Closes a connection. The client in question will see a failure on its IPC handle.

void ipc_svc_shutdown()
Closes all connections to all clients and shuts down the
any incoming RPCs. This should be called prior to
shutdown of the RPC service.

Status ipc_onfail(IPC who, void (*what)(IPC, void *), void *arg)
Specifies an error handling function for the handle who. If an error occurs while talking

server so as to no longer accept
exiting in order to do a clean

to who, the function what is called with who and arg as arguments.

typedef int (*authproc_t)(IPC)

authproc_t ipc_set_auth(authproc_t auth_fn)
Sets up an authorization test for incoming RPCs. Auth_fn is called for each new client
that requests a connection. The client is rejected if auth_fn returns false. Ipc_set_auth
returns the old authorization function.

void XrpcInit() and

void XrpcAppInit(XtAppContext ctxt)
Special functions that allow an RPC server to coexist with an X toolkit application.
After calls to ipc_svc_init and XrpcInit, a call to XtMainLoop causes the program
to service incoming RPCs as well as Xt events. The latter form should be used if a
non-default XtAppContext is used.

July 1994 13

3.1.2.3 XDR Routines The XDR routines are defined in a manner in which every XDR
routine has the same signature. In this way, pointers to XDR routines can be passed around
in a transparent manner regardless of what type of object the XDR routines handle, or even
whether it is a read or a write routine.

The following basic low-level routines translate from XDR format to machine format.
Each routine takes an ipc channel, a pointer to the place to put the read object, and an
extra pointer that is ignored.

int rxdr_int(IPC ipc, void *p, void *ignore)

int rxdr_u_int(IPC ipc, void *p, void *ignore)

int rxdr_char(IPC ipc, void *p, void *ignore)

int rxdr_u_char(IPC ipc, void *p, void *ignore)

int rxdr_short(IPC ipc, void *p, void *ignore)

int rxdr_u_short(IPC ipc, void *p, void *ignore)

int rxdr_long(IPC ipc, void *p, void *ignore)

int rxdr_u_long(IPC ipc, void *p, void *ignore)

int rxdr_float(IPC ipc, void *p, void *ignore)

int rxdr_double(IPC ipc, void *p, void *ignore)

The following low-level routines translate from machine format to XDR format. Each
routine takes an ipc channel, a pointer to the machine object, and an extra pointer that is
ignored.

int wxdr_int(IPC ipc, void *p, void *ignore)

int wxdr_u_int(IPC ipc, void *p, void *ignore)

int wxdr_char(IPC ipc, void *p, void *ignore)

int wxdr_u_char(IPC ipc, void *p, void *ignore)

int wxdr_short(IPC ipc, void *p, void *ignore)

int wxdr_u_short(IPC ipc, void *p, void *ignore)

int wxdr_long(IPC ipc, void *p, void *ignore)

int wxdr_u_long(IPC ipc, void *p, void *ignore)

14 NIDES Software Design Document

int wxdr_float(IPC ipc, void *p, void *ignore)

int wxdr_double(IPC ipc, void *p, void *ignore)

The following routines translate a char * pointed at by p, which is either a NULL pointer
or a pointer to a NULL-terminated string of characters (a C string).

int rxdr_opaque(IPC ipc, void *p, void *cnt)

int wxdr_opaque(IPC ipc, void *p, void *cnt)

The following routines read and write cnt bytes of data pointed at by p.

int rxdr_void(IPC ipc, void *p, void *ignore)

int wxdr_void(IPC ipc, void *p, void *ignore)

The following routines translate a type void object.

int rxdr_string(IPC ipc, void *p, void *ignore)

int wxdr_string(IPC ipc, void *p, void *ignore)

The following routines translate an array of objects of an arbitrary data type. The third
argument points to a struct xdr_vector_info, which specifies the size of the array and
information about the elements.

struct xdr_vector_info {
u_int size /* number of elements */
u_int elsize /* size of each element (bytes) */
int (*proc)(IPC, void *, void *) /* XDR routine for elements */
void *extra /* third arg to proc */
}

int rxdr_vector(IPC ipc, void *p, void *info)

int wxdr_vector(IPC ipc, void *p, void *info)

The following routine fills in a struct xdr_vector_info.

void *xdr_vector_info(struct xdr_vector_info. *p, u_int size, u_int elsize, int (*proc)(IPC, void *,
void*), void *extra)

July 1994 15

The following routines, which are analogous to the xdr_vector routines described earlier,
deal with pointers to a single object of some type.

struct xdr_pointer_info {
u_int size /* size of pointed to object */
int (*proc)(IPC, void *, void *) /* XDR routine for pointed to object */
void *extra /* third arg to proc */

}

int rxdr_pointer(IPC ipc, void *p, void *info)

int wxdr_pointer(IPC ipc, void *p, void *info)

void *xdr_pointer_info(struct xdr_pointer_info *p,u_int size, int (*proc)(IPC, void *, void*), void
*extra)

The XDR routines generated by arpcgen are organized as routines named rxdr_ type and
wxdr_type for each data type defined in the input. The client stubs and server stubs make
use of these XDR routines to copy arguments and results back and forth. In general, the
programmer need not know about the details of the XDR routines and about calling them,
since this is handled by automatically generated code.

The ipc_clnt_open and ipc_svc_init both translate names to physical host and TCP
port addresses by talking to the ipc_nameserver, which must be running on a well-known
host and port. The mechanism used to specify the location of the nameserver is the envi-
ronment variable IPC_NAMESERVER, which should be in the form hostname: portnum.

It is impossible to have more than one server in the same process. That is, the server-side
stubs generated by two runs of arpcgen cannot be linked together to form a server that deals
with the RPCs of both servers. A client may multiplex between multiple servers, but it is
up to the programmer to be sure not to make an RPC to a server that does not support it.

3.1.3 Persistent Storage Component

The persistent storage component of the NIDES beta release is divided into two subcom-
ponents, a persistent storage subcomponent which is based on the NIDES alpha release
persistent storage component, and a new data management facility subcomponent (DMF).

3.1.3.1 Persistent Storage Facility
The persistent storage facility allows an arbitrary hierarchical naming scheme, which

is used to make independent instances in the beta version. The persistent storage facility
defines five data types, used to store configuration and reconfiguration information.

typedef struct instance_config {
char *comment ;
long timestamp, last_arec_timestamp;

16

int result_filter;
} instance_config;

NIDES Software Design Document

typedef struct Stats_config {
struct Name_list *no_updates;
unsigned long update_offset;
struct profile_config *pconfig;
int update_method,cache_size;

} Stats_config;

typedef struct Rulebase_config {
long nactions;
struct config_action actions[nactions];
} Rulebase_config;

typedef struct anal_config {
struct instance_config config;
struct Stats_config stconfig;
struct Rulebase_config rbconfig;
} anal_config;

typedef struct anal_reconfig {
struct Stats_reconfig *stats_reconfig;
struct Rulebase_reconfig *rulebase_reconfig;
int result_filter;
} anal_reconfig;

The persistent storage facility provides the following library functions that allow manip-
ulation of persistent storage data.

Status get_list_of_instance_names(Name_list **ilist)
Reads the list of currently available NIDES instances into ilist.

Status copy_instance(string to_instance, string from_instance)
Copies the NIDES instance from_instance into to_instance.

Status create_instance(string instance)
Creates the NIDES instance instance initialized appropriately.

July 1994 17

Status delete_instance(string instance)
Deletes the NIDES instance instance.

Status delete_stats_profile(string instance ,string profile)
Deletes the NIDES profile for subject profile contained in instance instance.

Status get_list_of_subjects(const string instance, Name_list **list)
Reads the list of subjects who have profiles in instance into the list list.

Status read_current_profile(string instance, const string profile_name,
Curr_prof_struct *curr_profile)
Reads the current profile from instance instance for the subject named profile_name
into curr_profile.

Status write_current_profile(string instance, const string profile_name, const
Curr_prof_struct *curr_profile)
Writes the current profile curr_profile for subject named profile_name for the in-
stance instance.

Status read_historical_profile(string instance, const string profile_name,
Hist_prof_struct *hist_profile)
Reads the historical profile for subject profile_name into hist_profile from instance
instance.

Status write_historical_profile(string instance, const string profile_name, const
Hist_prof_struct *hist_profile)
Writes the historical profile hist_profile for subject named profile_name into in-
stance instance.

Status read_stats_config(const string instance, Statconfig_struct *config)
Reads the statistics configuration for instance instance into config.

Status write_stats_config(const string instance, const Statconfig_struct *config

)
Writes the statistics configuration config into instance instance.

Status delete_stats_config(const string instance, const Statconfig_struct
*config)
Deletes the statistics configuration config from instance instance.

Status read_rulebase_config(const string instance, struct Rulebase_config
*config)
Reads the rulebase configuration for instance instance into config.

Status write_rulebase_config(const string instance, struct Rulebase_config
*config)
Writes the rulebase configuration config into instance instance.

18 NIDES Software Design Document

Status read_kb(const string instance, struct rulebase *kb)
Reads knowledge base from instance instance into kb.

Status write_kb(const string instance, struct rulebase *kb)
Writes the knowledge base kb into instance instance.

Status read_instance_config(const string instance, struct instance_config *i)
Reads the instance configuration into i from instance instance.

Status write_instance_config(const string instance, struct instance_config *i)

Status read_anal_config(const string instance, struct anal_config *i)

Writes the instance configuration i into instance instance.

Reads the analysis configuration into i from instance instance.

Status write_anal_config(const string instance, struct anal_config *i)
Writes the analysis configuration i into instance instance.

Status read_instance_reconfig(const string instance, struct anal_reconfig *i)
Reads the instance reconfiguration into i from instance instance.

Status write_instance_reconfig(const string instance, struct anal_reconfig *i)
Writes the instance reconfiguration i into instance instance.

Status delete_instance_reconfig(const string instance
Deletes the instance reconfiguration for instance instance.

Status read_recipient_list (struct Name_list *list)
Reads the recipients list and places it in list.

Status read_targethost_list (struct Name_list *list)
Reads the target host list and places it in list.

Status read_priv_user_list (struct Name_list *list)
Reads the privileged user list and places it in list.

Status read_alert_filter_list (struct Nameint_list *list)
Reads the alert filter list and places it in list.

Status read_mandatory_rulelist (struct Name_list *list)
Reads the mandatory rule list and places it in list.

Status write_recipient_list(struct Name_list *list)
Writes the recipients list list.

Status write_targethost_list (struct Name_list *list)
Writes the target, host list list.

July 1994 19

Status write_priv_user_list(struct Name_list *list)
Writes the privileged user list list.

Status write_alert_filter_list(struct Nameint_list *list)
Writes the alert filter list list .

Status write_mandatory_rulelist(struct Name_list *list)
Writes the mandatory rule list list.

Status delete_alert_filter_list()
Deletes the alert filter list.

Status privileged_user()
Determines whether the user running nides is privileged.

3.1.3.2 Data Management Facility
The DMF is maintained as a library of routines separate from the other persistent storage

routines; however, the DMF is an integral part of the overall persistent storage component.
The main features that distinguish the DMF functionality from the persistent storage facility
routines are:

 The data stored by the DMF is presumed to be voluminous, and thus must be com-
pressed in order to save disk space.

 The data stored by the DMF must be easily accessible once stored, and thus must be
indexed according to major search criteria.

The DMF does not define any new data types for storage purposes; however, it does
define the following new data types used for reading and writing existing data structures.

typedef enum
{

DMF_ERROR = -3, /* indicates various errors */
DMF_NOT_FOUND = -2, /* indicates certain items were not found */
DMF_NO_MORE_DATA = -1, /* indicates no more data available */
DMF_OK = 0 /* indicates successful execution */

} dmf_return_codes;

typedef enum
{

DMF_RULEBASE = 1,
DMF_STATISTICS = 2,
DMF_BOTH = 3

20 NIDES Software Design Document

} component;

struct Interval
{

time_t start;
time_t end;

};

typedef struct _Handle *handle;
typedef struct _ListHandle *list_handle;
typedef struct Interval *interval;

The DMF provides the following library functions that allow reading and writing of
NIDES specific data structures.

create_audit_database(const string dbname, const string root)
Takes a database name string and creates a database for storing NIDES audit records.
If the value of root is not NULL, the value will be used as the �root� path for the
database; otherwise, the appropriate path will be determined from the IDES_ROOT
environment variable. This routine returns DMF_OK for success, or DMF error codes for
failure.

create_result_database(const string dbname, const string root)
Takes a database name string and creates a database for storing NIDES result records.
If the value of root is not NULL, the value will be used as the �root� path for the
database; otherwise, the appropriate path will be determined from the IDES_ROOT
environment variable. This routine returns DMF_OK for success, or DMF error codes for
failure.

create_alert_database(const string dbname, const string root)
Takes a database name string and creates a database for storing NIDES alert records. If
the value of root is not NULL, the value will be used as the �root� path for the database;
otherwise, the appropriate path will be determined from the IDES_ROOT environment
variable. This routine returns DMF_OK for success, or DMF error codes for failure.

handle new_audit_handle(const string dbname, const string root)
Creates a handle that is used in subsequent DMF routines for both reading and writing
of ia_audit_rec data structures.

handle new_result_handle(const string dbname, const string root)
Creates a handle that is used in subsequent DMF routines for both reading and writing
of AnalResult data structures.

July 1994 21

handle new_alert_handle(const string dbname, const string root)
Creates a handle that is used in subsequent DMF routines for both reading and writing
of AnalResult data structures.

void close_handle(handle h)
Closes and frees a handle to any type of DMF database. If the handle was used for
writing data, all data is flushed and all open files are closed.

list_handle new_audit_list_handle(const string dbname, const string root)
Creates a list_handle that is used in subsequent DMF routines for both reading and
writing of ia_audit_rec data structures.

list_handle new_result_list_handle(const string dbname, const string root)
Creates a list_handle that is used in subsequent DMF routines for both reading and
writing of AnalResult data structures.

list_handle new_alert_list_handle(const string dbname, const string root)
Creates a list_handle that is used in subsequent DMF routines for both reading and
writing of AnalResult data structures.

void close_list_handle(list_handle lh)
Closes and frees a list_handle to any type of DMF database. If the list_handle was used
for writing data, all data is flushed and all open files are closed.

int write_audit_rec(ia_audit_rec *ar, handle *h)
Writes the provided audit record data to the DMF database identified by the provided
handle. The appropriate compression and indexing is performed automatically.

int write_result_rec(struct AnalResult *rr, handle *h)
Writes the provided result record data to the DMF database identified by the provided
handle. The appropriate compression and indexing is performed automatically.

int write_alert_rec(struct AnalResult *rr, handle *h)
Writes the provided alert record data to the DMF database identified by the provided
handle. The appropriate compression and indexing is performed automatically.

int select_audit_recs(const string user, const interval time_int,
const int countflag, int *count, handle h)
Indicates the criteria for selecting audit records for a single user. The user and time
interval must be specified. The number of records found can be obtained by setting the
countflag variable; the total number of records will be written to the integer indicated
by the count variable. The provided handle will be modified to reflect the selection
criteria; the handle should not be modified until the desired records have been acquired
(using get_audit_rec()).

22 NIDES Software Design Document

int select_result_recs(const string user, const interval time_int,
const int countflag, int *count, handle h)
Indicates the criteria for selecting result records for a single user. The user and time
interval must be specified. The number of records found can be obtained by setting the
countflag variable; the total number of records will be written to the integer indicated
by the count variable. The provided handle will be modified to reflect the selection
criteria; the handle should not be modified until the desired records have been acquired
(using get_result_rec()).

int select_result_recs(const string user, const interval time_int,
const component comp, const int countflag, int *count, handle h)
Indicates the criteria for selecting result records for a single user. The user, component,
and time interval must be specified. The number of records found can be obtained by
setting the countflag variable; the total number of records will be written to the in-
teger indicated by the count variable. The provided handle will be modified to reflect
the selection criteria; the handle should not be modified until the desired records have
been acquired (using get _alert_rec ()).

int select_user_audit_recs(const int userc, string *userv,
const interval time_int, const ia_audit_action action, const int countflag,
int *count, list_handle lh)
Indicates the criteria for selecting audit records for a list of users. The user list, audit
action type, and time interval must be specified. The number of records found can
be obtained by setting the countflag variable; the total number of records will be
written to the integer indicated by the count variable. The provided list handle will
be modified to reflect, the selection criteria; the list handle should not be modified until
the desired records have been acquired (using get_list_audit_rec()).

int select_user_result_recs(const int userc, string *userv,
const interval time_int, const int countflag, int *count, list_handle lh)
Indicates the criteria for selecting result records for a list of users. The user list and
time interval must be specified. The number of records found can be obtained by set-
ting the countflag variable; the total number of records will be written to the integer
indicated by the count variable. The provided list handle will be modified to reflect
the selection criteria; the list handle should not be modified until the desired records
have been acquired (using get_list_result_rec()).

int select_user_alert_recs (const int userc, string *userv,
const interval time_int, const component comp, const int countflag,
int *count, list_handle lh)
Indicates the criteria for selecting result records for a list of users. The user list, com-
ponent, and time interval must be specified. The number of records found can be
obtained by setting the countflag variable; the total number of records will be writ_
ten to the integer indicated by the count variable. The provided list handle will be

July 1994 23

modified to reflect the selection criteria; the list handle should not be modified until
the desired records have been acquired (using get_list_alert_rec()).

int get_audit_rec(ia_audit_rec *ar, handle *hp)
Acquires individual audit records, in chronological order, from a handle previously
configured by a call to select_audit_recs(). The return value will be DMF_OK if
the record was successfully acquired, DMF_NO_MORE_DATA if there are no more records
meeting the selection criteria, or DMF_ERROR if an internal error was encountered.

int get_result_rec(struct AnalResult *rr, handle *hp)
Acquires individual result records, in chronological order, from a handle previously
configured by a call to select_result_recs(). The return value will be DMF_OK if
the record was successfully acquired, DMF_NO_MORE_DATA if there are no more records
meeting the selection criteria, or DMF_ERROR if an internal error was encountered.

int get_alert_rec(struct AnalResult *rr, handle *hp)
Acquires individual alert records, in chronological order, from a handle previously
configured by a call to select_alert_recs(). The return value will be DMF_OK if
the record was successfully acquired, DMF_NO_MORE_DATA if there are no more records
meeting the selection criteria, or DMF_ERROR if an internal error was encountered.

int get_list_audit_rec(ia_audit_rec **ar, list_handle lh)
Acquires individual audit records, in chronological order, from a list handle previously
configured by a call to select_user_audit_recs (). The return value will be DMF_OK
if the record was successfully acquired, DMF_NO_MORE_DATA if there are no more records
meeting the selection criteria, or DMF_ERROR if an internal error was encountered.

int get_list_result_rec(AnalResult **rr, list_handle lh)
Acquires individual alert records, in chronological order, from a list handle previously
configured by a call to select_user_alert_recs(). The return value will be DMF_OK
if the record was successfully acquired, DMF_NO_MORE_DATA if there are no more records
meeting the selection criteria, or DMF_ERROR if an internal error was encountered.

int get_list_alert_rec(AnalResult **rr, list_handle lh)
Acquires individual alert records, in chronological order, from a list handle previously
configured by a call to select_user_alert_recs(). The return value will be DMF_OK
if the record was successfully acquired, DMF_NO_MORE_DATA if there are no more records
meeting the selection criteria, or DMF_ERROR if an internal error was encountered.

3.1.4 Graphical User-Interface Component

Motif is an object-oriented set, of X-compatible programming tools that support creation of
a large set of user interface objects called widgets. A widget can be a text display area, a
menu button, a label, or any object that is displayed to the user and possibly manipulated.
Another class of widgets, called managers, controls the organization of the display and the

24 NIDES Software Design Document

arrangements and actions of the widgets that comprise the user interface. The Motif software
libraries provide numerous functions to create and manipulate widgets. In addition, many
Motif functions provide the capability to create high-level objects that are comprised of many
widgets with a single function. The Motif model is based upon X-windows, and also utilizes
the Xt libraries. The NIDES security-officer user-interface service is built using both the
Motif libraries, and the Xt libraries.

For more information about the Motif library, refer to [3].

3.2 Audit-Data Generation Component

The audit-data generation component consists of two modules: audit record gathering and
audit record conversion. Both of these modules are encapsulated in the agen utility, which
runs as a client of arpool on each target host.

3.2.1 Audit Data Gathering

The audit data gathering module is a set of functions that read data from system log files
and return these data in the NIDES audit record format. The functions are instantiated for
each distinct type of audit data.

The following defines the interface of each of these functions.

open(void) Opens the default system log file for a certain type of audit data. A value
of -1 is returned on error, and 0 on success.

seek_eof (void) Seeks to the end of the current log file. This function should be called
after open() to discard or skip over stale audit data. A value of -1 is returned on error,
and 0 on success.

get(ia_node **rp) Reads the next audit record and converts it to the NIDES audit
record format (using the appropriate conversion function - see Section 3.2.2). It is
possible for multiple NIDES audit records to have been generated, so this function
returns a list of NIDES-formatted audit records. A value of -1 is returned on error;
otherwise, the length of the list is returned. A value of 0 indicates an empty list. The
list is returned in the first result-parameter.

Note that this routine implements a polling model of checking for the availability of
new audit data. This function must be able to deal with logging facilities that span
multiple files. For example, C2 and BSM accounting can arbitrarily stop updating one
file and begin writing into a new file. To deal with this, the module examines the audit
data stream for file continuation records and polls for the existence of new accounting
files.

July 1994 25

3.2.2 Audit-Data Conversion

Currently, SunOS BSM, SunOS C2, and standard UNIX accounting audit data are sup_
ported. The conversion functions are as follows.

int BSMProcessRecord(int fd)
Converts a SunOS BSM audit record read from the file associated with fd into a list
of NIDES audit records. This function returns 1 if any NIDES audit records were
generated, 0 if no NIDES audit records were generated, and -1 on error.

ia_node *BSMCurrentNodes()
Returns the list of NIDES audit records generated by the last call to the function
BSMProcessRecord(). This function returns a pointer to the list of available records,
or a NULL pointer if no records are available.

int c2_to_ialist(const audit_record_t *au, ia_node **rp)
Converts a SunOS C2 audit record into a list of NIDES audit records, returned in the
second parameter. This function returns 0 on success, or -1 on error.

int pacct_to_ia(const pacct_rec *, ia_audit_rec *)
Converts a UNIX accounting record into a NIDES audit record, returned in the second
parameter. This function returns 0 on success, or -1 on error.

3.2.3 Data Structures

The data structures used by the functions defined above are described below. The SunOS
C2 audit record is defined, followed by the standard UNIX accounting record format. A
structure for maintaining a list of NIDES-formatted audit records is defined last.

While both SunOS C2 and standard UNIX accounting audit data have fixed audit record
formats, the SunOS BSM audit data format permits a large degree of variability by rep-
resenting all audit data as a collection of attribute/value pairs where each attribute has a
differing format. For that reason, unlike the SunOS C2 and standard UNIX conversion, the
SunOS BSM audit data conversion generates NIDES audit records directly without going
through a conversion to an intermediate format. The following data structures define the
SunOS C2 and standard UNIX accounting audit data record formats.

/* from /usr/include/sys/audit.h */

struct audit_record {
short au_record_size; /* size of audit record */
short au_record_type; /* its type */
unsigned int au_event; /* the event */
time_t au_time; /* the time */
uid_t au_uid; /* real uid */

26 NIDES Software Design Document

uid_t au_auid; /* audit uid */
uid_t au_euid; /* effective uid */
gid_t au_gid; /* real group id */
short au_pid; /* process id */
int au_errno; /* error code */
int au_return; /* a return value */
blabel_t au_label; /* audit label */
short au_param_count; /* # of parameters */

};
typedef struct audit_record audit_record_t;

/* from /usr/include/sys/acct.h */

typedef struct {
char
char
unsigned short
unsigned short
short
long
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
char

} pacct_rec;

ac_flag;
ac_stat;
ac_uid;
ac_gid;
ac_tty;
ac_btime;
ac_utime;
ac_stime;
ac_etime;
ac_mem;
ac_io;
ac_rw;
ac_comm[8];

typedef struct ia_node ia_node;
struct ia_node {

ia_node *next;
ia_audit_rec *ia;

Accounting flag */
Exit status */
Accounting user ID */
Accounting group ID */
control typewriter */
(time_t) Beginning time */
(comp_t) Accounting user time */
(comp_t) Accounting system time */
(comp_t) Accounting elapsed time */

(comp_t) average memory usage */
(comp_t) number of chars transferred */

(comp_t) number of blocks read/written */
Accounting command name */

/* NIDES-formatted audit record
see appendix for details */

};

3.3 Audit-Data Collection Component

The audit-data collection component is designed to be a building block for a server capable
of scheduling or managing multiple RPC requests. The audit record collection component

July 1994 27

is responsible for managing the flow of audit records such that the analysis components of
NIDES see a consistent view of all audit records. Furthermore, audit records from many
target hosts are multiplexed into a single stream of audit records.

All analysis components of NIDES must see a consistent view of the audit data. In order
to achieve this, audit records from multiple target hosts are centrally collected and assigned
unique identifiers. Each analysis component of NIDES can then request audit data from this
centralized location. Since all analysis components fetch audit data from the same server, it
is easy to ensure that all analysis components receive the same audit data.

The central repository of audit records in the audit data collection component is referred
to as the pool of audit records. The pool is simply a first-in first-out queue of audit records
with multiple producers and multiple consumers. Producers are entities that add audit
records into the pool, while consumers fetch these audit records. The audit data collection
component keeps track of the number of consumers in order to correctly determine when an
audit record can be discarded; that is, an audit record is discarded only when every consumer
has received it.

In order to bound the memory requirements of the audit record pool, the audit data
collection component enforces a flow-control mechanism using high-water and low-water
marks. If the number of audit records in the pool exceeds a predetermined high-water mark,
then a "no more" flag is returned to the producer that the producer is expected to honor by
not adding any more audit records until further notice. When audit records are consumed
and the number of audit records in the pool falls below the low-water mark, then new audit
records are once again accepted and stored in the pool. Producers may install a call-back
function to be notified of this condition. It is expected that a low-water mark of 256 audit
records and a high-water mark of 768 will function adequately, although these parameters
can be changed.

Audit records in the pool are managed using a reference count scheme. An audit record is
kept in the pool until every client has requested that record. Thus, it is possible for consumers
to request audit records at different rates. Again, to bound the memory requirements of the
pool, the flow-control mechanism prevents one consumer from getting too far ahead of other
consumers. In other words, since all but the fastest consumer have not consumed the audit
records in the pool, the records must be kept in the pool until the slower consumers have
received the records. Since there is a bound on the number of audit records in the pool, the
faster consumer will reach a point at which no new audit records are available in the pool
and the faster consumers are blocked by the flow-control scheme.

If there are no consumers, then audit records are accepted until the high-water mark is
reached. When the high-water mark is reached, further audit records are accepted, but a
�no more� flag is returned. In addition, a call-back function may be specified to be called
when more audit records can be accepted. The main intent is to block the producers from
generating and transmitting audit data when there is no room in the pool.

When the first consumer attaches to the pool, the pool is flushed such that this consumer
can fetch only audit records produced after the consumer attached.

28 NIDES Software Design Document

When additional consumers attach, each will fetch audit records, beginning with the
oldest audit record stored in the pool at that time.

When a particular audit record has been read by all consumers, it is deleted. If this
deletion causes the pool size to drop below the low-water mark, the call-back function for
each producer is called to signal that they may resume the generation and transmission of
audit data.

When consumers request audit records, they receive audit records in the order that they
were received by the audit data collection component.

The functions for the audit data collection component are as follows.

int put_records(int count, ia_audit_rec **avec)
Appends an array of NIDES audit records to the pool. The memory allocated for the
audit records is inherited by this function; that is, the caller must not reference these
audit records when this function returns. However, the avec vector should be freed
by the caller. This function returns TRUE if the pool is full, and otherwise returns
FALSE.

int get_records(client_info *client, ia_audit_rec **avec, long *count)
Returns a copy of the next *count audit records. The value of *count should be greater
than 0. The value of *count is modified to reflect the number of audit records actually
returned if this function returns TRUE. If the returned records are not referenced by
any other consumers, then they are deleted from the pool. Avec is a result parameter
for returning audit records. The caller is responsible for freeing the audit records and
the vector avec. The parameter client is an opaque data type used to identify the
consumer making a given request.

This function returns FALSE if no audit records were available, and TRUE if one or
more audit records were returned.

3.4 Statistical Component

The NIDES statistical analysis component maintains historical statistical profiles for each
user and raises an alarm when observed activity departs from established patterns of use for
an individual. The historical profiles are updated regularly, and older data �aged� out with
each profile update, so that NIDES adaptively learns what to expect from each user. This
type of analysis is intended to detect intruders masquerading as legitimate users. Statistical
analysis may also detect intruders who exploit previously unknown vulnerabilities and who
cannot be detected by any other means. The statistical analysis is also expected to be
particularly useful in detecting activity that may be indictative of fraud and abuse.

3.4.1 Algorithm Summary

The basic statistical approach in NIDES is to compare a user�s short-term behavior to the
user�s historical or long-term behavior. In comparing short-term behavior to long-term

July 1994 29

behavior, the statistical component is concerned with both long-term behaviors that do not
appear in short-term behavior and short-term behaviors that are not typical of long-term
behavior. Whenever short-term behavior is sufficiently unlike long-term behavior, a warning
flag is raised. This statistical approach requires no a priori knowledge about what type of
behavior would result in compromised security. The specifics of the algorithms implemented
in the statistical component are discussed here; a more rigorous description of the algorithms
can be found in [5].

The number of audit records or number of days that constitute short-term and long-term
behavior can be set through the specification of a �half-life�. For example, if the security
officer wants short-term behavior to reflect on the order of 200 audit records, a half-life of
approximately 100 audit records should be specified. This will assure that the 200th audit
record has only one-quarter the influence of the most recent audit record, the 400th audit
record has only one-sixteenth of the influence, and so forth. Similarly, a reasonable half-life
for a long-term profile might be 30 days.

Aspects of subject behavior are represented as measures (for example, file access, CPU
usage, hour of use). We refer to a subject�s profile as the set of measure values associated
with short-term and long-term behavior. We have classified the NIDES measures into five
groups: activity intensity, audit record distribution, categorical, continuous, and binary.
These different classifications serve different purposes. The activity intensity measures de-
termine whether the volume of activity generated is normal. The audit record distribution
measure determines whether for recently observed activity (say, the last few hundred audit
records generated), the types of actions being generated are normal. The categorical and
continuous measures determine whether within a type of activity (say, accessing a file), the
behavior over the recent past that affects that action is normal. The binary measures note
if a particular type of activity occurred.

We use a vector called that �quantifies� each measure, and this quantification is
recorded into a frequency distribution. By observing the values of over many audit records,
and by selecting appropriate intervals for categorizing values, we build a historical distri-
bution for We use 32 intervals for for each measure, with logarithmic interval spacing
being either linear or geometric. The last interval does not have an upper bound, so that all
values of belong to some interval. Generally speaking, small values of are indicative of a
recent past that is similar to historical behavior, while large values of represent dissimilar
behavior.

We use another vector called that is a transformation of such that is small whenever
 is small, and large whenever is large; this transformation can be viewed as a rescaling

of the magnitude of The transformation of to requires knowledge of the historical
distribution of It is a simple mapping of the tail probabilities (which we call of the
distribution of onto that of a half-normal distribution.

Finally, we have the statistic, which is a summary judgment of the abnormality of
many measures, and is, in fact, the sum of the squares of the individual measures in For
each audit record generated by a subject, the single test statistic value is computed that
summarizes the degree of abnormality of the subject�s behavior in the near past. Large values

30 NIDES Software Design Document

for T2 are indicative of abnormal behavior, and values close to zero are indicative of normal
behavior (e.g., behavior consistent with previously observed behavior). We keep a historical
distribution of the T2 statistic, and we use this distribution as a basis for determining whether
or not a score value is anomalous enough to warrant an alert. We have currently selected
the 99.9th percentile of the historical distribution of T2 score values as the default �critical�
level of concern for the security officer (this percentile value may be changed at any time).

The statistical analysis is based upon many days of audit data processing. Like any
other process that relies on empirical probability distributions, the more data contributing
to the distribution, the more stable and accurate the information becomes. The �training�
of these distribution tables is a key factor in the effectiveness of the statistical component,
and although we have not provided a formal (algorithmic) explanation of how such training
is accomplished (see [5]), the training concepts are implemented in the component. Some of
these are described in Section 3.4.3.

3.4.2 Data Structures

The following constants are used throughout the statistical component data structures and
functions.

#define MAXMEASURES 49 /* number of measures */
#define MAXMEASURES7 MAXMEASURES*7 /* 7x number of measures */
#define NUMBINS 32 /* number of bins for Q */
#define MINPROB 1.0/4096.0 /* minimum probability for categories */
#define CATRAREPROB 0.01 /* default rare category total probability */

The statistical component utilizes three types of data structures:

 Profiles

 Activity

 Configuration

3.4.2.1 Profiles A subject�s profile comprises three main data structures.

Curr_prof_struct represents the short-term profile, and is generally updated on a per-
audit-record basis. Each subject must have its own current profile containing the
following information

 subjid � An integer value that uniquely identifies the subject of this profile.

 subjname The character string representation (also unique) that identifies the
subject.

July 1994 31

 prevtstamp A long integer value representing the timestamp of the last audit
record processed for this subject. This number represents the number of seconds
elapsed since January 1, 1970 (see ctime() in any UNIX manual).

 score_red The score that corresponds to the thresh_red false positive per-
centage value (which is found in the profile_config struct).

 score_yellow The score that corresponds to the thresh_yellow false positive
percentage value (which is found in the profile_config struct).

 actvd_measures An array of integers that represent the active measures for
the subject. Each element in the array represents one measure, and it is set to
the logical OR of the measure�s active/inactive and trained/untrained status.

l q An array of type float of size MAXMEASURES. It represents the Q values for a
profile. The values for this array are recomputed for each measure observed in an
audit record.

 nmeas_active Maintains the count of active measures (irrespective of training
status). A measure is considered active when it is configured to contribute to
statistical score calculation (anomaly dectection).

 qcount A matrix of integers (MAXMEASURES by NUMBINS) that keeps track of
the daily count of values falling into the appropriate bins. This matrix is reset
to 0 after each profile update.

 cats � An array of pointers to a list of categories for each measure. Each list is
sorted in ascending order of category probability. See the description of Catnode
for more detail (page 33).

 s An array of type float of size MAXMEASURES that represents the values for a
profile. This array�s elements are recomputed for every measure observed in each
audit record.

 dailycnt An array of integers of size MAXMEASURES representing the number of
times each measure was observed during the day. It is reset to 0 at profile update
time.

 scorehistn The value of the aged count of scores that have been produced
for this subject.

 hashed_cats A hashed table for all the categories defined for this subject. This
table is primarily used for quick access.

 nextcatid - An array of size of MAXMEASURES. It keeps track of the next category
ID number available for assignment for a particular measure (each category has
a unique ID). It is incremented after a new category for the given measure has
been assigned a value.

 t2cnt An array of size of MAXMEASURES7. It keeps track of the daily score
counts, and is reset to 0 at profile update time.

32 NIDES Software Design Document

 neffn An array of size MAXMEASURES that tracks the daily aged Effective-N
(the counts in dailycnt do not reflect short-term aging). See the glossary and
[l] for a description of Effective-N.

Hist_prof_struct represents the long-term profile, and is generally updated once a day.
As with the current profile structure, each subject must have its own historical
profile; hence, for each Curr_prof_struct, there should always be a corresponding
Hist_prof_struct. The historical profile structure contains the following information.

subjid An integer value that uniquely identifies the subject of this profile.

subjname The character string representation (also unique) that identifies the
subject.

lastupdate The long integer value representing the time of the last historical
profile update for this subject. This number represents the number of seconds
elapsed since January 1, 1970 (see ctime() in any UNIX manual).

nupdates An integer value that tells the number of profile updates. It is
incremented by 1 each time the profile is updated.

qprob A matrix (MAXMEASURES by NUMBINS) of type float representing the
historical distribution of Q values within each bin (interval). This matrix is re-
computed at profile update time using the daily counts accumulated in the qcount
stored in the current profile.

tprob A matrix (MAXMEASURES by NUMBINS) of type float representing the tail
probabilities of the qprob historical distribution. See Section 3.4.1 for a more
detailed explanation. This matrix is recomputed at profile update time using the
recomputed qprob values.

rareprob An array of size MAXMEASURES representing the sum of all the category
probabilities for the categories classified as RARE. The sum of the probabilities
does not exceed the user-configurable quantity maxsumrare (see page 35). It is
computed at update time, and has a cap value of maxsumrare.

maxrareprob An array of size MAXMEASURES representing the maximum ob-
served category probability of all categories classified into the RARE group. It is
used in conjunction with rareprob to keep track of new and/or RARE categories
observed for each measure. It is recomputed at profile update time, and must
never be greater than maxsumrare .

ncats An array of size MAXMEASURES representing the aged number of categories
for each measure. This value is used to �smooth� the normalization of during
score computation. It is recalculated at profile update time, incorporating the
most recent count of categories for each measure.

histn An array of size MAXMEASURES representing the historically aged
Effective-N for each measure (i.e., the aged number of times each measure was
observed). It is recomputed and aged at profile update time.

July 1994 33

 t2dist An array of size MAXMEASURES7 representing the historical T2 score dis-
tribution used to determine new score threshold values. It is recomputed at profile
update time. The first 200 slots represent 0.1 score point, and the remainder of
the array slots represent whole score points.

 measactv_histn A smoothed estimate of the number of active measures as
they vary from update to update. This is required to properly adjust the T2
statistics as the number of measures contributing to the scoring changes. It is
recomputed at profile update time.

 upd_to_train An integer array of size MAXMEASURES that tracks the number of
updates required in the current training phase.

 tphase An integer array of size MAXMEASURES that reflects the training phase
the measure is in, which is some combination of the predefined constants TCATS
for category training, for training, or for distribution training.

 effn_since_train A float array of size MAXMEASURES that tracks the Effective-
N since the current training phase started. The phase is exited when both the
updates to train go down to zero and the Effective-N since training began ex-
ceeds one third of the configurable constant mineffn (see the definition of struct
measure on 34).

Catnode represents a category for a particular measure. It contains both current and
historical information, but is stored as part of the current profile. The fields for this
data structure are as follows.

 catid — The integer code of this category. It is unique within a measure only.

 cmid Specifies the measure that this catnode belongs to.
The category id catid and cmid pair are unique throughout all the categories for
all measures for a subject.

 catname — The character string identification of this category.

 catprob The historically aged probability for this category within this measure.
It is updated at profile update time.

 catcount Tracks how many times this category was observed since the last
profile update. It is reset to zero at profile update time.

 agecnt The aged count for each category (i.e., how many times the category
was observed, weighted by short-term aging). It is updated whenever it is observed
in an audit record.

 prevobscnt Tracks the count of the audit records (since the last update) when
this category was last observed. Needed for the recursive Q calculation.

 catflags A vector of bit flags that indicate any peculiarities for the category
(such as a first-time seen category or whether it is in the RARE group).

34 NIDES Software Design Document

 catnext A pointer to another Catnode data structure. Categories within a
measure are represented as linked lists.

3.4.2.2 Activity Data Before the statistical component can compute any scores, audit
data must be converted into a representation that can be used for processing. To support
this, the following two data structures are used.

Measure. Measures are defined in the statistical component configuration file. Except
where indicated, all of the fields defined for this data structure may be reconfigured by
the security officer.

not be modified.
 mid An integer value representing the measure id that is unique and should

 mname A mnemonic character string representation of the measure that should
not be modified.

 mdesc Stores a verbose description of the measure.

 mtype Indicates the type of the measure, continuous, categorical, or binary.
(Note that intensity measures are actually continuous measures, and the audit
record distribution measure is categorical, and thus do not have a different type
associated with them.)

 mflags Indicates if the measure is activated (1 if active, 0 otherwise).

 mscalar A scalar value only used for continuous measures to evenly distribute

 mqmax Contains a configurable upper limit on the Q value and is used to properly
scale the intervals of Q for an �even� distribution (i.e., one that uses an adequate
number of the preallocated Q bins).

the measure values across 32 bins.

 mweight A weighting factor for the measure currently unused.

 mineffn The minimum effective-n (number of observations weighted by the
short-term aging factor) before a measure is allowed to contribute to scoring,
regardless of the number of updates observed for the measure.

 short_hlife The (user-configurable) short-term half-life in number of audit
records for the measure.

 short_gamma The short-term aging factor computed from the above short-term
half-life used to age the observations.

Activity. Each audit record is transformed into a vector of activity units. Activity units
are represented in a vector of size MAXMEASURES, thus providing a one-to-one mapping
of observation units to measures.

 mid Identifies the measure to which this activity is mapped.

July 1994 35

 m_val The observed activity value for the measure that is a structure containing
different data types. The observation of an activity can be represented in several
ways, depending on the type of measure. For a continuous measure, the activity
is a float or double value. For a categorical measure, the activity is a character
string (e.g., name of a file, terminal, host). For binary measures, the activity is
set to 1 if observed. If the measure activity is not observed in the audit record,
the m_val values would be 0, null, and 0 respectively for each measure type.

3.4.2.3 Configuration Data The statistical component has a variety of configurable
parameters; all of these are stored in the following data structure. There is only one set of
configuration data per instance of the statistical component.

Statconfig_struct. This data structure contains all the global configurable parameters in
the statistical component. Only a trained security officer should be allowed to modify
these parameters, particularly since changing some of these requires the profiles to be
�retrained� before the statistical scores becomes meaningful again.

prof_hlife The long-term profile half-life that is the basis for long-term profile
aging, represented in units of profile updates.

 arec_gamma The aging factor applied to each count in the short-term profile,
currently overridden by the short_gamma parameter in the measure struct.

 prof_gamma The aging factor applied to historical counts in the long-term
profile at update time, computed using prof_hlife.

 corr_cutoff The correlation cutoff value for the correlation matrix, currently
unused.

 traindays The configurable minimum number of profile updates that are
required for profile training.

 maxsumrare The configurable maximum sum of probabilities for categories in
the RARE group. At update time, all categories whose cumulative sum is less
than or equal this value are grouped into the RARE category.

 measures The table of measures for the statistical component, serving as the
default configuration for a new subject.

 nmeas_active Represents the number of activated measures.

 statmode A bit field that indicates which modes the statistical component
should be running. An example mode determines if the updater should be invoked
by the main statistical component (as opposed to being independently started
from an external process). This field is generally used only for development and
experimentation purposes.

 command_classes Contains lists of special commands or hosts that have been
assigned to a particular group (e.g., compilers, editors, local hosts). It is a hash
table that contains all commands and hosts.

36 NIDES Software Design Document

l thresholds Contains the threshold levels used to determine when a score value
should be reported to the security officer. These levels represent the percentiles
where the score should be considered in alert status. Currently, there are two
levels specified: red for critical, yellow for warning. The default settings for these
values are 99.9 and 99 respectively, and are user-configurable. These correspond
to settings of 0.1 percent and 1 percent for the structure items thresh_red and
thresh_yellow, respectively.

l numtempdirs Tracks the number of temporary directories, that is, directo-
ries whose contents are considered �temporary files� and thus do not generate
categories in the historical profile.

l tempdirs A class item list containing directory prefixes of temporary directo-
ries (configurable through the tmp_dirs class list).

Stats_reconfig. This data structure contains reconfigured changes to the configuration
structure. Only a trained security officer should be allowed to modify these parameters,
particularly since changing some of these requires the profiles to be �retrained� before
the statistical scores becomes meaningful again.

l type_chg An integer denoting the type of configuration changes requested.

l prof_hlife, traindays, maxsumrare, thresh_yellow, thresh_red These
fields potentially contain (depending on type_chg) new values for any subset of
the corresponding fields in the Statconfig_struct.

l cache_size Contains a new value for the profile cache size (in number of
profiles cached during real-time operation) if a change to the cache size has been
made.

l update_method Contains a new specification of the update method (none, by
system clock, or by audit record timestamp), if a change to the update method
configuration has been made.

l no_updates A list of subjects who should not have their profiles updated during
the daily profile update.

l update_offset The number of seconds past midnight that the daily profile
update should occur.

l meas_chg Contains a field marking the types of changes requested in chg_mark,
followed by new values for any combination of mflags, short_hlife, mineffn,
qmax or scalar.

l chg_list Contains changes to class list items.

Several data structures, stored in lists or tables, require fast access (such as categories
and command lists). A �generic� data structure is available to support a hashing scheme for
various types of structures. Utility functions are available to create, examine, and manipulate
these hash tables.

July 1994 37

3.4.3 Functional Interfaces

Status make_activity_vector(const ia_audit_rec *audit_rec, const Hashnode
*commd_classes[], const Hashnode *subj_commd_list[], int numtempdirs,
Nameint_list *tempdirs[], long *prev_timestamp, Activity *activity_vec[])
This function creates the activity vector that represents the measures observed in the
audit record under analysis. It extracts relevant information from the NIDES audit
record and puts it into the activity vector. In some cases, some data conversion is
performed (e.g., the timestamp value in the audit record is represented in UNIX long
integer form, and the hour and day must be deciphered from this value).

To obtain the subject name for this audit record, this function looks at the audit user
name first. If this is not available, then it will use the regular user name. It assumes
that at least one of these fields is not null.

The inter-arrival time (used for the activity intensity measures and the inter-arrival
measure) is computed from the timestamp of the audit record and the timestamp of
the last audit record processed for the subject.

If the audit record indicates that a command was invoked, this function will first check
to see if this command is any one of the special commands defined for this target
system (e.g., mailer, editor, compiler); these commands are provided in the argument
commd_classes. If a command has previously not been seen for this subject, then
it is added to the subject�s command lists (both the general commands and special
commands). Some action types have predefined command names associated with them,
and so the command (program) names are assigned to these predefined names.

If a measure is of the binary type, then the activity vector for this measure will contain
either a 0 or 1 to indicate whether this measure was observed (1 means observed).
If a measure is continuous, the activity vector is assigned the appropriate numerical
value; if this measure is not observed in the audit record, then the value is set to 0.
If a measure is categorical, the activity vector location is assigned the character string
representation of the category ID; if the measure is not observed, the corresponding
location in the activity vector for this measure is set to null.

Some of the network-related measures require knowledge of whether a specified host
name is local or remote. �Local� means that the host is on the same local area network;
all other remote hosts are considered remote. The list of local hosts is defined in the
commd_classes argument.

Status compute_score(const Activity *activity_vec[], const int intarrtime, const
Statconfig_struct *config_params, const Hist_prof_struct
*hist_profile, Curr_prof_struct *curr_profile, float *score) This function is the
heart of the statistical anomaly detection analysis. It implements the algorithms that
compare the subject�s short-term profile against its long-term profile, to produce a
score value that represents the degree to which the short-term profile differs from the
long-term profile.

38 NIDES Software Design Document

This computation is performed for each audit record. This function takes an activity
vector that represents the measures observed in a subject�s audit record and updates
the short-term profile for this subject. The short-term profile is calculated according
to the type of measure (continuous, categorical, audit record distribution or activity
intensity). In the case of continuous and categorical measures, this is done by finding
the observed category for a measure and determining the probability of this category
in the recent past (defined by the audit record half-life value). The audit record
distribution measure is calculated similarly, where the �categories� are the types of
measures themselves (and hence each of the categories is updated for those measures
that have been observed). The short-term profiles for the activity intensity measures
are based on the amount of time that has elapsed since the last audit record for a
subject (hence the inter-arrival parameter is needed).

Special consideration is given to never-seen-before categories and categories with a
very low probability. For never-seen-before categories, we have a separate category; if
appearances of never-seen-before categories reach a level that differs greatly from the
long-term profile for the never-seen-before category, the (and hence value for the
measure will be significantly high. RARE categories are scored as a group, using the
cumulative observed sum of RARE probabilities.

Once the short-term profile is computed, a value is produced for each observed mea-
sure that indicates some comparison of the short-term to the long-term profile. These
 values are mapped to corresponding values, and this vector of �comparison� values

is squared and summed to produce a score that basically measures abnormality.
The distribution table for is represented in tenths of score points for the first, 200,
and whole numbers thereafter, so some conversion techniques are used to accommodate
this.

In addition to the short-term versus long-term comparison, this function also records
cumulative activity of a subject for this period (a �period� in this case is defined as the
time between profile updates). This is done by independently counting the number of
observations for the categories, values (which bins they fall into), and the resultant

 scores. These counters are later incorporated into the long-term profile at the next
profile update (see update_profile ()).

Status update_profile(const Statconfig_struct *config, Curr_prof_struct
*curr_profile, Hist_prof_struct *hist_profile, long event_time) This function
implements the algorithms that create the long-term profile. Each time this function is
called, the long-term profiles are updated with the recent set of activity. The cumula-
tive activity for a subject since the last profile update is incorporated into the previous
long-term profile and aged according to the profile half-life defined in the statistical
configuration, and a new long-term profile is built for the subject. All cumulative
activity counters are reset to zero to begin the next period.

There are three levels of profile updating. At the lowest level, the probability values
for individual measure categories are adjusted according to the frequency of observa-

July 1994 39

tion during the day. If a measures category falls below a minimum probability value
(MINPROB), it gets dropped from the category list, in order to avoid an unbounded grow-
ing list of categories for any measure. Finally, the cached hash table that contains the
individual measure categories is rebuilt (since some categories may have been dropped
because they fell below the minimum probability). The next level of profile update
occurs at the Q distribution level. Again, the observed values for Q (defined in the
qcount field of the current, profile) are folded into the historical distribution and aged
appropriately, and a new Q distribution is computed. Finally, the score distribution
table is updated in a similar manner. The "new� 99.9 th percentile is recalculated and
is subsequently used to determine whether a score should be reported as anomalous
to the security officer. Again (as noted in compute_score() see page 37), the
distribution table is represented in tenths of score points for the first 200, and whole
numbers thereafter.

Based on the training stage of the profile, only certain portions of the profile are
updated. The training period is broken up into three stages. This is done by dividing
the total number of training days specified in the configuration by three (rounding up
to the next whole number), and hence each �trimester� is the calculated number of
days. During the first stage, only the categorical probabilities are updated. In the
second trimester of training, the long-term profiling for the distribution also takes
place. Finally, in the last, trimester, scores are profiled. Once the training period
is complete, all parts of the long-term profile are updated each time this function is
called, and only then can the scores be considered valid.

Status make_def_profile(char *subjname, Curr_prof_struct
*curr_prof, Histprof_struct *hist_prof, profile_config *config) This function
creates a default profile. The data structures for the current and historical profiles
must be allocated prior to making this call. A default frequency distribution table is
created for both the and the tails of the distribution (TPROB). We do this to ensure
that the sum of the probabilities in each row add up to 1.0. We evenly distribute the
probability among the first, 10 bins for each measure, and zero out the rest. For the

 distribution table, 1.0 is filled in for the first score slot.

Certain measures will have predefined categories from the start. For example, continu-
ous (counting) measures will automatically have 32 categories, as we map the observed
values for these measures logarithmically into bin values between 0 and 31. By default,
the audit record distribution measure will have all the initially activated measures as its
categories. Default probabilities for these predefined categories are evenly distributed
(l/32 for continuous measures, l/active-measures for the audit record distribution
measure). As for categorical measures, some measures, such as the hours-of-use and
days-of-use measures, have a finite set of categories (24 hours of the day and 7 days
in the week), so the categories are predefined for these measures. In addition, all the
categorical measures have a �new� category associated with them, and hence this cat-

40 NIDES Software Design Document

egory is preallocated in this function (with default probability of MINPROB). Finally,
the hash table for all measure categories is created for the above predefined categories.

Score thresholds are set to default values: 99th percentile for warning status, and the
99.9th percentile for critical status.

Status evaluate_stat_reconfig(Stats_reconfig *recfg, profile_config *config) This
function evaluates the statistical reconfiguration for errors and inconsistencies. If it re-
turns without error, reconfiguration items are applied. Some items can be immediately
applied; others are deferred to the next update.

Status apply_immediate_stat_reconfig(Stats_reconfig *recfg, profile_config
*config) This function takes the given statistical reconfiguration and applies those
changes that can be done immediately (such as turning measures ON or OFF) to the
subject�s profile.

Status apply_deferred_stat_reconfig(Stats_reconfig *recfg, profile_config
*config) This function applies reconfiguration changes that are done at profile up-
date time, (e.g., measure and scaling parameters and new half-life values). The
aging factors are computed from the given half-life values. The number of active mea-
sures is recomputed (some may have been reactivated or turned off) and applied to
the profile. If the score threshold cutoffs have been changed, the corresponding score
values are recomputed.

Status check_anomaly(float score, const Curr_prof_struct *cprof, const
Hist_prof_struct *hprof, int measures[], int training_days,
Stats_analysis *anomaly_rec) This function determines whether the score obtained
from compute_score is anomalous enough to be reported to the security officer. A
Stat_analysis data structure is passed in to be filled with relevant information.

If the score is above the critical threshold value (defined in the subject�s profile), then
this function sets the alert status to �critical.� If the profile is still in training mode,
all scores are reported as �safe.�

In addition to the above, this function determines the top five measures that con-
tributed to the score. This is done by examining all the values and selecting the high-
est five values. These data, along with the alert status, are returned in the anomaly_rec
argument.

3.5 Rulebased Component

The rulebased component uses a rulebase generated by an SRI developed rulebase tool (see
[l]). This tool takes a rulebase specification and translates it into a series of functions for
each rule (these functions implement a modified version of the Rete algorithm [2]). It also
generates functions for asserting all the different types of facts into the knowledge base.
Besides the code generated by the rulebase tool, there is a support library that includes code

July 1994 41

for the rulebase engine and other support code that remains constant for all rulebases. None
of these functions are visible to the NIDES programmer; all external interaction with the
rulebased component is conducted using the interface functions described in Section 3.5.3.

3.5.1 Functionality

The rulebased component does its inference using a modified Rete algorithm. The main
difference between the SRI rulebase implementation and the Rete algorithm as described
by Forgy [2], is that SRI�s tool does not represent the knowledge base state in the form of
the networks Forgy discusses; instead it uses lists and functions to serve the purpose of the
network nodes.

Each rule consists of a set of functions, all of which are normally invisible to the NIDES
programmer. These functions are called the ante1, ante2, binding, and concl. An ante1
function is called with a message invoking one of several actions: assert, negate, or select
binding. When a fact is negated, the ante1 functions are called with the fact and a negate
action message. These functions remove the fact from the list of facts they know about. The
act of asserting a fact into the knowledge base consists of calling all the ante1 functions with
the fact and an assert action message. The ante1 function checks to see if it is interested in
the kind of fact being asserted� whether the fact is of the type it looks for and whether the
data in the fact meets the tests the rule was given for that kind of fact. That is, the ante1
function checks antecedent clauses of the form

[+ev:event^BLOG|action == ia#BAD_LOGIN]

and these tests are performed at fact-assert time. Finally, when the component wants the
rules to determine whether they can fire, it calls the ante1 functions with a select binding
action message.

The select binding message causes the ante1 functions to call their ante2 functions. The
ante2 functions check to see if their rule is active. If their rule is inactive, they return
without doing any of their tests. If the rule is active, the ante2 functions perform the inter-
fact tests and consistency checks to determine whether a rule can fire, as well as any other
arbitrary tests that were specified in the rule�s antecedent. They test clauses of the form

[+bp:bad_password|userid == ev.real_userid]

where ev.real_userid is a field from a fact that was already tested by the ante1 function,
from a clause such as

[+ev:event|action == ia#BAD_LOGIN]

They also test clauses such as

[?|kb_check_local_host(ev.rhost, do.domain_name) == bool#FALSE]

42 NIDES Software Design Document

that implement some arbitrary test. The ante2 functions also check fact marks, which are
dynamic and may change after a fact has been asserted.

If the ante2 function decides that its rule can fire, it calls its rule�s binding function with
the facts that allow it to fire. The binding function returns a binding consisting of the rule
and a list of the facts allowing the rule to fire. The ante2 function stores this in the binding
slot for the rule. If the rule can�t fire, it stores a null binding in the binding slot.

The next step in most production systems is called conflict resolution. Conflict resolution
means selecting one rule to fire when many have indicated that they can fire. In the SRI
rulebase system, conflict resolution effectively occurs at compile time, when rules are ordered
by two specific criteria: rank (also known as priority), and order of occurrence. After all the
rules have selected their bindings, the first rule that has a valid binding is the rule that will
fire.

Once the rulebase engine has selected a rule to fire, it invokes the concl function of that
rule with the facts that allowed the rule to fire as arguments. The concl function implements
the rule actions.

3.5.2 Data Structures

The data type definitions for this component are as follows.

struct factlist{
/* struct fact is dynamically defined when rulebase specification is
translated */
struct fact *fact;
struct factlist *next;
struct factlist *prev;

};

The struct factlist data structure is used to store lists of the facts that are bound by
the rules.

struct factheader{
struct factlist *fl;
struct factheader *next;
struct factheader *prev;

};

The struct factheader data structure stores lists of factlists.

struct bind{
struct rulelist *rule;
struct factlist *facts;

};

July 1994 43

The struct bind data structure is used to store a rule together with the collection of
facts that make the rule firable.

struct bindlist{
struct bind *binding;
struct bindlist *next;
struct bindlist *prev;

};

The struct bindlist data structure stores lists of firable bindings.

struct rulefields {
void (*antel)();
void (*concl)();
char *name;

};

The struct rulefields data structure stores pointers to the functions that implement
the rule and the name of the rule.

struct rulelist{
struct rulefields r;
struct factheader *fh; /*
struct bindlist *bestbinding;/*
char *name; /*
int repeat; /*
int rank; /*
int active; /*
long ante_secs; /*
long ante_usecs; /*
long conc_secs; /*
long conc_usecs; /*
long rule_firings; /*
char *text; /*
char *sourcefile; /*
struct rulelist *next;
struct rulelist *prev;

};

Facts this rule has bound to. */
Best binding with which to fire. */
Rule name. */
Rule repeatability. */
Rule priority. */
Can the rule currently fire? */
Cumulative seconds spent executing antecedent. */
Cumulative microseconds spent executing antecedent. */
Cumulative seconds spent executing conclusion. */
Cumulative microseconds spent executing conclusion. */
Number of times consequent was executed. */
Rule text. */
Full path name of rule source. */

The struct rulelist data structure contains all the data needed to implement a rule,
together with a pointer to a list of the facts, if any, to which the rule is bound.

44 NIDES Software Design Document

typedef enum {
ADD_RULE,
DELETE_RULE,
MODIFY_RULE,

} ia_rb_action;

The ia_rb_action enumeration contains the possible configuration actions.

struct config_action {
string rule_name;
ia_rb_action action_code; /* see enumerated types listed above */

};

The struct config_action data structure is used to pass the configuration action mes-
sages to the rulebased component.

struct rule_info {
string rule_path;
string rule_text;
int active;

};

The struct rule_info data structure is used to return information about a rule when
a get_rule_info() request is made.

struct fact_info {
int count;
string fact_rep[count];

};

The struct fact_info data structure is used to return the human-readable representa-
tions of the facts in the knowledge base in response to a get_fact_info() request.

3.5.3 Functional Interfaces

The interface definitions for the rulebased component are as follows.

Status init_kb(struct rulebase **kb)
Initializes a knowledge base. As a result of this call, the pointer kb will point to the
head of a properly initialized rulebase. This function also calls internal initialization
functions needed to set up the state of the knowledge base. It currently returns 0
(meaning no error) whenever it returns.

45July 1994

Status config_kb(struct rulelist **kb, const struct config_action *action)
Configures a knowledge base in kb using configuration action in action. This function
allows run-time configuration of the rulebased component. The current configuration
capabilities consist of adding, modifying, or removing rules from the knowledge base
while the system is operating. This function depends on the system link editor pro-
viding dynamic linking and loading functionality and thus is not portable.

The function config_kb() returns -1 for memory or other system failures, -2 for
invalid rule name, -3 if it is passed a config action that it doesn�t understand, and 0
for success.

Status deduce_kb(const ia_audit_rec *ar, const struct rulebase *rb,
Rulebase_analysis *result)
Analyzes the audit record in ar using the knowledge base rb and records its analysis in
result. It works by asserting the current audit record into the component�s knowledge
base using the automatically generated assert function for audit record facts. It then
calls the rulebase engine. The rulebase engine performs all possible analysis on the
audit record that was asserted, and then removes the audit record from the knowledge
base.

This function always returns a 0 (meaning no error) result.

Status get_rule_info_kb(const struct rulelist *kb, const string rule_name,
struct rule_info *info)
Gets information about the rule name contained in rule_name from kb and records it
in info. It scans the knowledge base for the given rule name, and if it finds a rule
with that name it returns information about the rule. This information consists of the
name of the source file from where the rule came, the text of the rule, and whether the
rule is active.

The function returns 0 if it finds the rule and -1 if it cannot find it.

get_fact_info_kb(const struct rulelist *kb, struct fact_info *info)
Gets information about the facts in the knowledge base from kb and records this
information in info using a human-readable representation. There is no global list of
the knowledge base�s facts; instead, each rule maintains a list of the facts it is interested
in (this is called �binding to� a fact). Thus, this function must scan the list of rules and
extract the facts each rule has bound to. Since more than one rule can bind to a given
fact, the function sorts the list of facts and discards duplicates. It then creates the
printed representations of the facts and sorts these representations by fact ID number.
The function is thus fairly expensive, since it requires two sorts: a step to discard
duplicates, and a step to create the printed representations.

Besides printing the representations, the function puts a count of the number of
facts into the info structure. This function returns -1 for failures such as running out
of memory and 0 for success.

46 NIDES Software Design Document

get_sorted_rulelist_kb()
Returns the list of rules in the rulebase.

3.6 Resolver Component

The resolver component analyzes the alerts issued by the statistical and rulebased com-
ponents and reports nonredundant �critical� results. The data structures of the resolver
component are as follows.

typedef enum {
SAFE,
WARNING,
CRITICAL

} ia_result_code;

/* everything is okay */
/* activity to consider investigating */
/* critical alert */

typedef struct audit_record_info {
ia_timeval timestamp; /* time audit record was generated */
ia_seqno rseq; /* sequence number of audit record */
string host; /* target host generating the audit record */
string subject; /* subject (user) generating the audit record */

} audit_record_info;

typedef struct Stats_analysis {
stats_result_code result_code; /* see enumerated types */
int top5meas[5]; /* top 5 measures */

ftype topSval[5]; /* top 5 "S" values */

ftype score_threshold; /* prevailing "red" threshold */

ftype score; /* score for this record */
} Stats_analysis;

typedef struct Rulebase_analysis {
ia_result_code result_code; /* see enumerated types */
string significance; /* significance of rule firing */
string rule_name; /* name of rule generating this record */

} Rulebase_analysis;

typedef struct Stats_result {
Stats_analysis anal; /* statistical analysis */
audit_record_info ar; /* audit record information */

} Stats_result;

typedef struct Rulebase_result {

July 1994 47

Rulebase_analysis anal; /* rulebased analysis */
audit_record_info ar; /* audit record information */

} Rulebase_result;

typedef struct AnalResult {
struct audit_record_info ar; /* key audit record fields */
struct Stats_analysis st_res; /* statistical analysis */
struct Rulebase_analysis rb_res; /* rulebased analysis */
string alert_message; /* text of generated alert */

} AnalResult;

The resolver has the following functional interfaces.

int resolve(const Stats_result *stats, const Rulebase_result *exsys,
AnalResult *result, int *reportit)
Resolves the analysis from the statistical component, stats, and the rulebased com-

ponent, exsys, and returns it in result. The flag reportit will indicate whether or
not an alert should be sent to the UI server.

Every result tagged as CRITICAL by the rulebased component becomes an alert. Every
result tagged as CRITICAL by the statistical component becomes an alert if one or more
of the following is true.

1. The previous audit record from this subject was not anomalous.

2. The previous audit record from this subject had a different top measure.

3. The score for this audit record is at least 1.5 times as high as the score in the
previous reported alert for this subject.

The function resolve() returns the number of alerts generated, which is always either
0 or 1. The flag reportit will be set only if an alert is generated, but, because of alert
filtering for individual subjects, the flag reportit may not be set for all alerts.

int result_type(AnalResult *result)
Determines the overall result level (SAFE, WARNING, or CRITICAL) of any given analysis

result record. Both the statistical component and rulebased component results are
consulted.

3.7 User Interface Component

The User Interface component provides the security officer with alert and status information
and enables the security officer to manage the operation of the NIDES prototype.

The component consists of the following function interfaces.

48 NIDES Software Design Document

put_alert

email_alert

control_target

target_error

control_server

server_error

put_status

control_ar_storage

ar_storage_error

start_test_analysis

test_analysis_status

put_alert_stats

put_test_progress

put_client_reconfig_status

Name_list *get_stats_client_update

Name_list *get_exsys_client_update

struct Stats_reconfig *get_stats_client_reconfig

struct Rulebase_reconfig *get_exsys_client_reconfig

int get_result_filter

Nameint_list *get_alert_filter_list

Each of the functions listed above is invoked either on behalf of the security officer or on
behalf of some other component of the NIDES prototype. The functions perform as follows.

put_alert(struct AnalResult *result)
Presents the AnalResult result to the security officer. The presentation mode is given
by the global variable alert_mechanism, which can have one of these four values.

 EMAIL_ALERT

 POPUP_ALERT

July 1994 49

 EMAIL_POPUP_ALERTS

 NO_ALERT_MECHANISM

The variable alert_mechanism is initialized to NO_ALERT_MECHANISM, thus disabling
presentation of alerts to the security officer by default. The variable�s value can be
modified by the security officer at any time.

email_alert(string message, string header)
Posts the email message message to a list of recipients contained in header. This
function is invoked as a result of function put_alert() being invoked (see page 48)
and EMAIL_ALERT or EMAIL_POPUP_ALERTS being set in the variable alert_mechanism.

control_target(string hostname, int action)
This function, when invoked, initiates or terminates audit generation activity based on
the action flag on the target host specified by hostname.

target_error(string hostname, int error_code)
Displays the name of the target host given by hostname to the security officer along
with the error message, which is determined by error_code. The error code is one of
the following types.

 TARGET_NOT_STARTED

 ERROR_ON_START_TARGET

 TARGET_NOT_STOPPED

 ERROR_ON_STOP_TARGET

This function is invoked only after the function control_target() (see page 49) has
been previously invoked.

control_server(string hostname, int action)
Initiates or terminates a NIDES server based on the action value on a specific host,
hostname.

server_error(string server_name, int error_code)
Displays the name of server server_name to the security officer along with the error
or status message, denoted by error_code. Possible error codes are

 ERROR_ON_START_ARPOOL

 ERROR_ON_START_ANALYSIS

 ERROR_ON_STOP_ARPOOL

 ERROR_ON_STOP_ANALYSIS

 STOP_ARPOOL_DONE

50 NIDES Software Design Document

l STOP_ANALYSIS_DONE

This function is invoked only after the function control_server() (see page 49) has
been previously invoked.

put_status(struct host_list *hosts)
Displays the status (UP or DOWN) of each target host, as listed in hosts, to the security
officer. If the list is already being displayed, it is updated to reflect any changes in
status.

control_ar_storage(string host, int action, string archive_name)
Causes audit data from the audit data collection component to be written into an audit
data archive by the archiver process. The host parameter indicates the host where
collection is to take place. The action parameter indicates whether collection needs
to start or stop. The archive_name parameter indicates the name of the archive where
audit data is to be recorded.

ar_storage_error(string host, string archive, int code)
Displays an error message to the security officer to the effect that audit data archival
has failed. The host parameter represents the host where the audit data archival
process was executing, the archive parameter represents the name of the file where
the archive data was written, and the code parameter is an error code that is currently
not used. This function is invoked only after the function control_ar_storage() has
been previously invoked (see page 50).

start_test_analysis(string host, int code, string instance, string adset,
string testname)
Invokes an execution of the batch_analysis process that uses the instance instance
to process audit data in NIDES format from the audit data set adset on the host
host with a testname of testname. The batch_analysis process writes the results
to an archive named testname. The code parameter is not used by the NIDES user
interface.

test_analysis_status(string host, int code, string testname)
Displays the status of a batch_analysis process to the security officer. The host
parameter represents the host where the batch_analysis is executing, the testname
parameter is the name of the test and code is the status code. Based upon the status
code, the user will be notified of the status of the batch_analysis process as follows.

l BATCH_DONE

l BATCH_ERROR

This function is invoked only if the function start_test_analysis() (see page 50) has
been previously invoked.

July 1994 51

put_alert_stats(struct host_list *hosts)
Updates the target host and system status displays with the alert record counts pro-
cessed by each configured target host. The information is contained in the hosts
parameter.

put_test_progress(string instance, string testname, string adset, int
records, int alerts, int starttime)
Reports the progress of active NIDES test runs approximately every 10 seconds. The
numbers of audit records (records) processed and alerts (alerts) generated are re-
ported for each test.

put_client_reconfig_status (struct updateStatus *status)
Acknowledges the receipt and application of deferred reconfiguration data by the anal-
ysis component. When this function is called, it signals the user interface to clear out
any pending reconfiguration data for the real-time instance.

Name_list *get_stats_client_update()
Returns the list of subjects whose profiles are to be updated. This function is called
when the security officer wishes to manually update one or more specific profiles.

struct Stats_reconfig *get_stats_client_reconfig()
Returns reconfiguration data for the real-time instance statistical analysis, such as
measures to be turned ON or OFF and statistical parameters. Some reconfiguration
elements must be deferred until the next profile update period, and hence the user in-
terface assumes that the reconfiguration is �pending� until acknowledgment is received
via a call to put_client_reconfig_status.

struct Rulebase_reconfig *get_exsys_client_reconfig()
Returns reconfiguration data for the real-time instance rulebased analysis (i.e., turning
rules ON or OFF). All rulebase reconfigurations are done immediately.

int get_result_filter()
Returns any new reconfiguration of the result archive filter for the real-time instance.
Reconfiguration of this data will cause the resolver to either increase or decrease the
amount of result data archived, depending on the level requested. The available levels
of filtering are

1. Critical Only

2. Warnings and Above (default filter value)

3. All Results

Nameint_list *get_alert_filter_list()
Returns a list of subjects whose alert reporting status is to be modified. By default,
all alerts are reported to the user interface. This configuration can be changed so that

52 NIDES Software Design Document

only statistical or rulebased alerts (or none at all) are to be reported for a particular
subject. All alerts will still be archived regardless of alert reporting filter configuration.

3.8 Audit Generation Service

The audit generation service consists of two processes: agend which is the server and agen
which is the active agent process of the server. The purpose of agen is to gather audit data
on the resident system, convert it to the NIDES audit record format on the fly, and forward
these audit records to the audit collection service.

Agen can operate in two modes, which can be selected with the use of command line
arguments. In the first mode, agen runs in a fault-tolerant mode. That is, it tries to recover
from communication errors that occur between it and the audit collection service by retrying
the failed operation. In the second mode, agen terminates when a communication error is
detected.

Agen is typically invoked by agend, which is responsible for starting and stopping agen.
The following discussion specifies the data structures and functional interfaces for agend.

3.8.1 Data Structures

The following data structures are used by the audit generation service:

const DEFAULT_AGEND_PORT = 7777; /* TCP/IP port on which
agend waits for incoming
requests.

*/

typedef enum agend_rval {
AGEND_ERR = -1,
AGEND_OK = 0,
AGEND_RUNNING,

} agend_rval;

agend_rval agend_start_agen(string agen_arg);
agend_rval agend_stop_agen(void);

3.8.2 Functional Interfaces

The following functions are exported as remote procedure calls (RPCs) for agend:

agend_start_agen(string agen_arg)
Starts an instance of agen on the target machine. Agen interprets the parameter
(agen_arg) as the address of the audit collection service to connect to. It is typically

July 1994 53

a string of the form hostname:port. The function returns AGEND_ERR if an unforeseen
error occurred, or AGEND_OK if agen was invoked successfully, and AGEND_RUNNING if a
previous instance of agen is still active. Only one instance of agen is allowed to be
running at any time.

agend_stop_agen()
Terminates a previous invocation of agen. This function returns AGEND_ERR if an un-
foreseen error occurs or no agen is active, and AGEND_OK if agen has been terminated
successfully.

3.9 Audit Collection Service

The audit collection service consists of a server (arpool) that is responsible for collection of
audit records from all target hosts and distribution of audit records to all active clients of
arpool.

3.9.1 Data Structures

The following data structures are used by the audit collection service:

struct

};

struct

};

arpool_vec {
struct ia_audit_rec *rec[nrec];

arpool_status {
long lowater,

hiwater;
long npool;
long max_rseq_hi;
unsigned long max_rseq_lo;
struct arpool_producer {

string hostname;
} producer[nproducers];
struct arpool_consumer {

string hostname;
long rseq_hi;
unsigned long rseq_lo;

} consumer[nconsumers];

3.9.2 Functional Interfaces

The following functions are exported as remote procedure calls:

54 NIDES Software Design Document

int put_ar_vec(struct arpool_vec *audit_record_vector)
Deposits a vector of audit records in the pool of audit records maintained by arpool
and returns the value 0 upon completion.

struct arpool_vec *get_ar_vec(void)
Retrieves a vector of audit records stored in arpool as its return result.

struct arpool_status *arpool_get_status(void)
Obtains status information maintained in arpool regarding agen processes on remote
target hosts that are depositing audit records, and on local client processes that are
retrieving audit records. This function also provides information about the usage of
the audit record pool.

3.10 Analysis Service

The analysis service consists of a server (analysis server) and two client processes: the
statistical client and the rulebased client. The server itself embodies the resolver component
(see Figure 2).

The analysis service defines the following functions, which can be invoked as RPCs.

 void put_stats_results(int count, Stats_result *vector)

 void put_rulebase_results(int count, Rulebase_result *vector)

 AlertResultVec *get_alerts()

The analysis server receives a stream of Stats_results from the statistical client and
a stream of Rulebase_results from the rulebased client. It matches corresponding pairs
of Stats_results and Rulebase_results, and invokes the resolver on each pair (using the
function resolve see page 47), queuing the resulting alerts, if any. It provides those alerts
to the user interface when function get_alerts() is invoked.

The analysis server assumes that there is precisely one statistical client, one rulebased
client, and one agent reading alerts on behalf of the user interface. It queues alerts indefi-
nitely, until the agent for the user interface reads them, so if the user interface is running
behind, the analysis server may require arbitrary amounts of memory to store these alerts.
In practice, this is unlikely to occur.

3.10.1 Statistical client

The statistical client invokes two functions using RPC, one defined in arpool and one defined
in the analysis server (see Figure 2). The functions invoked using RPC are

 From arpool
struct arpool_vec *arpool_get_ar_vec()

July 1994 55

 From analysis server
void put_stats_results(int count, Stats_result *vector)

The statistical client gets audit records from arpool with arpool_get_ar_vec. For each
audit record, the statistical client extracts the subject name and reads the profile for that
subject from the persistent storage. It then runs the audit record through the statistics with
make_activity_vector and check_anomaly. It sends the results to the analysis server after
each block of audit records with put_stats_results.

The statistical client also maintains an in-memory cache of profiles, so as to reduce access
time. All in-cache profiles that need to be cleared are flushed every midnight. Profiles are
eliminated from the cache at the same time if they have not been accessed in the preceding
24 hours.

Every midnight, the statistical client updates the historical profiles for all subjects who
have been active since the last update occurred.

The statistical client depends on the persistent storage facility to store all profiles between
invocations.

The statistical client flushes profiles that need to be checkpointed to persistent storage
in the event of any fatal error. It detects failures in arpool or the analysis server. It detects
TERMINATE signals and treats them as an error condition. It verifies the consistency of every
profile read from persistent storage. In some cases it may be able to continue even if the
profile is corrupt, by regenerating it from scratch.

3.10.2 Rulebased client

The rulebased client invokes two functions using RPC, one defined in arpool and one defined
in the analysis server (see Figure 2). The functions invoked using RPC are as follows

 From arpool
struct arpool_vec *arpool_get_ar_vec()

 From analysis server
void put_rulebase_results(int count, Rulebase_result *vector)

The rulebased client gets audit records from arpool with arpool_get_ar_vec(). It passes
each audit, record through the rulebase with deduce_kb(), and sends the results on to the
analysis server with put_rulebase_results().

3.11 Security Officer User Interface Service

The user interface service is responsible for presenting information received from the other
services to the security officer, and for allowing the security officer to manage the operation
of the prototype itself.

The agent interface is part of the user interface service. It is responsible for managing the
agents, and all communications with the agents. It exports a number of remote procedure

56 NIDES Software Design Document

calls that are used by the agents to exchange information with the user interface (UI) server,
as well as non-RPC calls that are used by the UI server to delegate jobs to the agents.

3.11.1 Data Structures

The UI server uses the following data structures.

struct email_msg {
string to;
string msg;

/* recipient list */
/* text of the message to send */

};

struct control_cmd {
string host;
int action; /* action code */
string a1,a2,a3; /* extra arguments used by some actions */

};

/* Action, result, and error codes */
enum { START_ARPOOL=101,

STOP_ARPOOL=102,
START_ANALYSIS=103,
STOP_ANALYSIS=104,
START_TARGET=105,
STOP_TARGET=106,
BATCH_START=107, START_BATCH=107,
BATCH_STOP=108, STOP_BATCH=108,
START_COLLECTION=109,
STOP_COLLECTION=110,

ERROR=0,
RUNNING=201,
DONE=202,

ERROR_ON_START_ARPOOL=1,
ERROR_ON_STOP_ARPOOL=2,
ERROR_ON_START_ANALYSIS=3,
ERROR_ON_STOP_ANALYSIS=4,
ERROR_ON_START_TARGET=5,
ERROR_ON_STOP_TARGET=6,

STOP_ARPOOL_DONE=205,
STOP_ANALYSIS_DONE=206,

July 1994 57

TARGET_UP=203,
TARGET_DOWN=204,
BATCH_ERROR=0,
BATCH_RUNNING=201,
BATCH_DONE=202,
/* 0- 99 error codes */
/* 100-199 action codes */
/* 200-299 nonerror result/information codes */
};

3.11.2 Functional Interfaces

The following functions are used by the UI server to start and stop its agents.

Status start_agents()
Forks and executes each of the seven agents, remembering their process-ids for later
use by kill_agents().

void kill_agents()
Kills all the agents started by start_agents().

The UI server exports the following functions as remote procedure calls that can be
invoked by agents.

 void put_alert(AnalResult *Alertinfo)

 void put_alert_stats(struct host_list *Alert_stats)

 void put_client_reconfig_status(struct updateStatus *status)

 Nameint_list *get_alert_filter_list()

 anal_reconfig *get_realtime_reconfig()

 Name_list *get_stats_client_target()

 Name_list *get_exsys_client_target()

 email_msg *get_email()

 control_cmd *get_control_target()

 void target_error(string host, int code)

 control_cmd *get_control_server()

58 NIDES Software Design Document

 void server_error(string server, int code)

 control_cmd *get_start_test_analysis()

 void test_analysis_status(string host, int status, string testname)

 void put_test_progress(string instance, string testname, string adset, int
records, int alerts, int start_time)

 control_cmd *get_control_ar_storage()

 void ar_storage_error(string host, int code, string archive)

 void put_status(struct hostlist *status)

3.11.3 Agents

The UI server has seven agent processes, each performing specific tasks (see Figure 2).

1. Agent_alerts
This agent is responsible for getting all results and alerts from the analysis server and
reporting them to the UI server. It also passes back and forth analysis reconfiguration
data and acknowledgments between the user interface and the analysis component.
The RPCs invoked are

 From analysis server
AnalResultVec *get_alerts()
struct host_list *get_alert_stats()
void put_alert_filter_list(Nameint_list *)
void put_stats_update_list(Name_list *)
void put_exsys_update_list(Name_list *)
Nameint_list *get_reconfig_status()

 From UI server
void put_alert(AnalResult *)
void put_alert_stats(struct host_list *)
Nameint_list *get_alert_filter_list()
Name_list get_stats_client_update()
Name_list get_exsys_client_update()
void put_client_reconfig_status(updateStatus *)

This agent is a loop that performs a number of functions. It gets a list of hosts and
an alert count, for each. The alert counts include the total number of alerts generated
since the target host was up, and a count of alerts over the past hour. Agent_alerts

July 1994 59

then gets a block of analysis results with get_alerts(), and reports them one at a
time with put_alert(). It next determines if there are any alert filter configuration
requests from the user interface and, if so, passes them on to the analysis server.
In addition, agent_alerts manages real-time analysis reconfiguration between the user
interface and the analysis server. If there are any reconfiguration requests waiting
at the user interface, it, fetches the reconfiguration data and sends it to the analysis
server for application. Once the analysis server has applied the reconfiguration changes,
agent_alerts passes back an acknowledgment to the user interface to inform the security
officer of the new reconfiguration. This agent also handles manual profile update
requests.
Also, agent_alerts gets alert statistics about currently active target hosts from the
analysis server with the get_alert_stats() call. This information is reported to the
UI server with the put_alert_stats() call. Polling is done approximately every 10
seconds.

The agent determines if the analysis server has failed or is not running and waits
for it to be started.

2. Agent_batch
This agent is responsible for starting and stopping test runs for the test facility. It also
reports test errors and completion to the UI server. The RPCs invoked are as follows.

 From UI server
control_cmd *get_start_test_analysis()
void test_analysis_status(string host, int errcode, string testname)

This agent gets commands from the UI server to start test analyses, and reports any
unusual occurrences relating to the analyses. It is implemented as a simple loop that
gets commands with get_start_test_analysis() and carries out the commands by
forking and spawning child processes and sending signals to them. It also catches
signals from these children and reports errors and completion status back to the UI
server with test_analysis_status(). This agent does not return the periodic status
of test runs that are shown in the user interface. This information is sent directly from
the batch_analysis.

3. Agent_email
This agent is responsible for sending e-mail on behalf of the UI server. The RPC
invoked is as follows.

 From UI server
email_msg *get_email()

This agent is a simple loop calling get_email and invoking sendmail to send email
messages.

60 NIDES Software Design Document

4. Agent_save
This agent is responsible for starting and stopping the archiving of audit data to files.
The RPCs invoked are as follows.

 From UI server
control_cmd *get_control_ar_storage()
void ar_storage_error(string host, int errcode, string archive)

This agent is a simple loop much like agent_batch. It gets commands to stop and
start archiving with get_control_ar_storage(), and carries out those commands by
forking and spawning child processes and sending signals to them. It catches signals
and reports back status with ar_storage_error().

5. Agent_server
This agent is responsible for starting and stopping the analysis server, the statistical
component, the rulebased component, and arpool, and reporting on their status to the
UI server. The RPCs invoked are as follows.

 From UI server
control_cmd *get_control_server()
void server_error(string host, int errcode)

This agent is a simple loop much like agent_batch. It gets commands to stop and start
analysis and arpool processes with the get_control_server() call, and carries out
those commands by forking and spawning child processes and sending signals to them.
It catches signals and reports back status with server_error().

6. Agent_status
This agent is responsible for polling arpool to determine the current status of the
NIDES system. The RPCs invoked are as follows.

 From arpool
arpool_status *arpool_get_status()

 From UI server
void put_status(struct hostlist *status)

This agent is a simple loop. It gets information about currently running target hosts
and the latest audit record sequence number from arpool with arpool_get_status().
If the target hosts� status have changed since the last, poll, or if the total number of
audit records (including the hourly count) from that host has increased since the last
count, this information is reported to the UI server with put_status(). Polling is done
approximately every 10 seconds.

July 1994 61

The agent detects failure on the part of arpool, and waits for that component to be
restarted.

7. Agent_target
This agent starts agen on target hosts by communicating with the agend daemon on
those target hosts. The RPCs invoked are as follows.

 From UI server
control_cmd *get_control_target()
void target_error(string host, int errcode)

 From agend
agend_rval agend_start_agen()
agend_rval agend_stop_agen()

This agent is a simple loop that gets commands from the UI server with
get_control_target() and makes calls to agend_start_agen() or
agend_stop_agen() on the requested target host as appropriate. If the RPC to agend
fails, it reports this with target_error().
Error handling in this agent is minimal. It detects RPC failures and reports errors
back to the UI server if it cannot invoke RPC on agend on the target host or if agend
reports an error. If agen fails after it has been successfully started by agend an error
cannot be reported in the absence of an RPC request. For this reason, agent_target
polls the agend servers of the running target hosts to verify that the agen process is
still running. Polling is done approximately every 10 seconds.

3.11.4 Agent Interfaces

An agent interface is associated with each agent. The agent interface maintains several
queue-pairs for sending commands to agents. Each queue-pair has two queues a queue of
messages to be sent to an agent, and a queue of agents waiting for messages. Only one of
these will be nonempty at any time. For each queue-pair, there are two functions; a local
function and an associated function that is exported for remote invocation by the agent.

The local function takes a message as an argument and either dequeues an agent and
sends the message to it, or, if the agent queue is empty, it queues the message. The RPC
function takes no arguments and dequeues and returns a message to the agent, or, if the
message queue is empty, it queues the agent. This arrangement allows multiple instances
of the same agent to efficiently handle many messages. The current version starts only one
instance of each agent.

There are five of these queue-pairs for five of the agents. The other two agents report
information to the UI server and consequently do not need a queue-pair.

1. email queue, used by agent_email,
accessed by email_alert() and get_email()

62 NIDES Software Design Document

2. server queue, used by agent_server,
accessed by control_server() and get_control_server()

3. target queue, used by agent_target,
accessed by control_target() and get_control_target()

4. batch queue, used by agent_batch,
accessed by start_test_analysis() and get_start_test_analysis()

5. ar_storage queue, used by agent_save,
accessed by control_ar_storage() and get_control_ar_storage()

For all of these agents except agent_email, there is also an error and status reporting RPC
function that is passed on to the UI server. These are server_error(), target_error(),
test_analysis_status(), and ar_storage_error() defined in Section 3.7.

There are three information-reporting RPC functions (defined in Section 3.7),
put_alert(), put_status(), and put_seqno(), that are passed on to the UI server for
it to display.

July 1994 63

4 Data Files

The following files/directories are required for NIDES to operate successfully.

 /etc/security/audit
Directory /etc/security/audit contains SunOS C2 or BSM audit files that are read
by agen. These files are created by the system audit daemon on the various target
hosts.

 /var/adm/pacct
Directory /var/adm/pacct contains accounting files that are read by agen. These files
are created by the system accounting daemons on the various target hosts.

 /etc/passwd
File /etc/passwd is used by agen to resolve numeric user IDS into user names. The
file should exist on each target host.

 storage
Directory storage is read from and written into by the persistent storage infras-
tructural component. It uses subdirectories adsets, instances, and dmf. Directory
storage itself is under <IDES_ROOT>, which is a site-dependent environment variable.

 mandatory_rules
File mandatory_rules is read by the UI component. It contains a list of rules that
may not be disabled. It is stored under <IDES_ROOT>/etc where <IDES_ROOT> is a
site-dependent environment variable.

 priv_users
File priv_users is read by the UI component. It contains a list of users with priv-
ileged access to NIDES functionalities. It is stored under <IDES_ROOT>/etc where
<IDES_ROOT> is a site-dependent environment variable.

 rb_config
File rb_config is read by the rulebased component. It contains site-specific information
that gets stored in the knowledge base of the rulebased component. It is stored under
<IDES_ROOT>/etc where <IDES_ROOT> is a site-dependent environment variable.

 stats_config
File stats_config is read by the statistical component. It contains statistics
customization data. It is created at system initialization. It is stored under
<IDES_ROOT>/storage/instance/stats_config.

64 NIDES Software Design Document

July 1994 65

5 Requirements Traceability

The requirements for the NIDES prototype and the extent to which they have been satisfied
[4], are as follows.

 Acceptable detection performance:
Minimal false positives and maximal true positives.

 1% to 5% false positives for the statistical component.

reporting of twenty-five known intrusion types using the rulebased component.

 Real-Time Operation:
Anomaly detection within minutes of occurrence.

Processing typically completed within 15 seconds of audit-data reception; it could take
longer depending on volume of audit data.

 Portability:
Straightforward migration to different hardware and different operating systems.

All NIDES-specific software is in ANSI C and all infrastructural facilities are estab-
lished or de facto standards.

 Usability:
Simple, flexible and comprehensive user interface for the security officer.

X-based graphical user interface with both online and detailed written documentation.

 Open:
Ability to enhance existing capabilities, incorporate new capabilities, and extend target
environment.

Architecture facilitates addition and enhancement of core components as well as ex-
pansion of target environment.

l Scalability:
Maintains level of performance for increasing rates of audit data generation in the
target environment.

The prototype is capable of processing audit data arriving at the rate of 50 audit
records per second without degrading real-time performance.

66 NIDES Software Design Document

July 1994 67

6 Differences between NIDES Beta and Alpha Pro-
totypes

The essential differences between the NIDES beta prototype and the NIDES alpha prototype
are as follows.

1. The NIDES beta prototype supports real-time analysis component reconfiguration, as
well as experiment reconfiguration. Reconfiguration of the rulebase (addition and dele-
tion of rules) is supported and statistical analysis parameters, measures, and training
values can be reconfigured. For a complete description of reconfiguration capabilities
see [1].

2. The NIDES beta prototype supports
using a set of search parameters.

3. The NIDES beta prototype supports

4. The NIDES beta prototype supports

audit data and result data archival and retrieval

filtering of alert and result data.

system performance tuning configuration.

5. The NIDES beta prototype includes an expanded rulebase over what was provided
with the alpha version.

6. The NIDES beta prototype supports privileged and non-privileged user functions.

68 NIDES Software Design Document

July 1994 69

APPENDIX

A NIDES Audit Record Format Description

The following describes the standard NIDES audit record format.

A.1 Structure of the NIDES Audit Record

The NIDES audit record can be declared by including audit_rec.h. This file includes
audit_rec_xdr.h, which is generated from a specification in audit_rec_xdr.ax using
arpcgen, described earlier (see page 11). The arpcgen utility generates routines to read and
write the data structures associated with the NIDES audit record in a hardware-independent
manner. These routines are described later in this appendix.

Contents of an NIDES Audit Record

The first nine data items of the NIDES audit record always exist, and the remaining data
items are optional. A data item exists if it is �check-marked� in the mark data item that
always exists (see page 74).

The NIDES audit record has the following data items.

version
Audit record structure version number. This should be 4 that is the fourth version
of the audit record structure.

rseq
A monotonically increasing sequence number that uniquely identifies an audit record
for NIDES. When an audit record is first generated, rseq is the same as tseq; however,
every time several sources of audit data are merged, this value is resequenced to preserve
its properties.

recvtime
Corresponds to the time stamp when this record was received by NIDES (arpool server).

tseq
Target host sequence number. It is a monotonically increasing number that uniquely
identifies an audit record on a particular target host.

atime
Corresponds to the time stamp at which the audit record was generated on the target
host. Note that the time stamp is determined by the clock on the target host and may,
in some cases, exceed the time stamp indicated by recvtime.

70 NIDES Software Design Document

hostname
Name of target host.

audit_src
Identifies the auditing subsystem that created the audit record. For example, it could
be created from C2 auditing, or from accounting data, or from an application.

action
Activity that resulted in the generation of an audit record.

mark
An array of bits whose length is the number of non-mandatory data items of this
structure. For every optional data item in this structure that exists, the corresponding
bit is set. For those optional data items that do not exist, the corresponding bits are
not set.

auname
Corresponds to the actual user name. It is the user�s authenticated (actual) ID rather
than the user�s current ID (see uname). For example, on UNIX, this should not change
with superuser enables (su).

auname_label
Security label associated with auname.

uname
User�s current ID. It might not correspond to the user�s actual ID (see auname) .

uname_label
Security label associated with uname.

pid
Process ID on the target host that performed the action (as specified by action).

ttyname
Name of the terminal associated with the action.

cmd
Name of the command associated with the action.

arglist
List of command arguments associated with the action.

syscall
Number of the system call or the operation code associated with the action.

errno
Error code from the action.

July 1994 71

rval
Return value from this action.

res_utime
User CPU time for this action.

res_stime
System CPU time for this action.

res_rtime
Elapsed real time for this action.

res_mem
Amount of memory consumed in executing the action.

res_io
Amount of terminal I/O performed in executing the action.

res_rw
Amount of disk I/O performed in executing the action.

ouname
Alternate user name, as in the argument of superuser enable (su).

ouname_label
Security label associated with ouname.

remoteuname
Remote user name for actions involving remotely initiated activity.

remoteuname_label
Security label associated with remoteuname.

remotehost
Remote hostname for actions involving remotely initiated activity.

path0
File name associated with the action.

path0_type
File type of path0.

path0_label
Security label associated with path0.

path1
Another file name associated with the action.

72 NIDES Software Design Document

path1_type
File type of path1.

path1_label
Security label associated with path0.

Data Structures

These data structures have been defined for use with the NIDES audit record.

ia_seqno
NIDES sequence numbers are represented as a pair of 32-bit numbers yielding a 64-bit
sequence number.

The following �operators� have been provided for this type.

void IA_SEQNO_INC(ia_seqno *) Increment the sequence number by 1.

int IA_SEQNO_EQL(ia_seqno *sn1, ia_seqno *sn2) Compare the two sequence
numbers for equality.

ia_timeval
NIDES time stamps represent seconds plus nanoseconds since 1970 GMT the seconds
portion of this structure is compatible with a UNIX time_t.

ia_label
NIDES security label.

ia_ftype
Specifies the type of file, one of the following:

IA_FTYPE_VOID: an error condition.

IA_FTYPE_REG: a regular file.

IA_FTYPE_TMP: a temporary or scratch file.

IA_FTYPE_PRIV: a privileged file such as the UNIX password file.

ia_audit_src
Identifies the source of the audit data.

ia_audit_action
Represents the audited action or event using a set of predefined, system independent
events.

IA_VOID: represents an undefined action that should be treated as an error.

IA_DISCON: target host lost contact with NIDES host (or vice versa).

July 1994 73

IA_ACCESS: a catch-all file reference that is, a file was referenced for a purpose
other than defined by other actions.

IA_OPEN: a file was opened.

IA_WRITE: a file was written.

IA_READ: a file was read.

IA_DELETE: a file was deleted.

IA_CREATE: a file was created.

IA_RMDIR: a directory was deleted.

IA_CHMOD: the �permissions�, access control list, or dates of a file were changed.

IA_EXEC: a program was executed (initiated).

IA_CHOWN: ownership of a file was changed.

IA_LINK: a symbolic or hard link was made from one file to another where path0
field denotes the original file and path1 denotes the new file name.

IA_CHDIR: a user changed his working directory.

IA_RENAME: a file was renamed where path0 denotes the original file name and path1
denotes the new file name.

IA_MKDIR: a directory was created.

IA_MOUNT: a file system was mounted (imported).

IA_UNMOUNT: a file system was unmounted.

IA_LOGIN: a user has logged in.

IA_BAD_LOGIN: a login attempt, has failed.

IA_SU: a user changed user IDS.

IA_BAD_SU: a user ID change failed.

IA_RESOURCE: no action occurred and only resource info is provided; this should
probably be subsumed in IA_UNCAT.

IA_EXIT: a process terminated.

IA_LOGOUT: a user logged out.
IA_UNCAT: a catch-all for actions that do not fit into any other action.

IA_RSH: a successful remote shell (action) has occurred.

IA_BAD_RSH: a IA_RSH attempt has failed.

IA_PASSWD: a user has changed his password.

IA_RMOUNT: a file system has been mounted remotely (exported).

IA_BAD_RMOUNT: an IA_RMOUNT has failed.

IA_PASSWD_AUTH: a username/password tuple has been verified and matched.

IA_BAD_PASSWD_AUTH: a username/password tuple has been verified and mismatched.

74 NIDES Software Design Document

A.2 Mark Structure

The mark field in the NIDES audit record is used to specify which fields in the NIDES audit
record are valid for each audit record. The following macros are declared in audit_rec.h and
may be used to access the mark structure.

IA_MARK_SET(ia_audit_rec *, ia_mark_e)
Set the mark associated with field_id. Field field_id is any one of the constants
defined in <IDES_ROOT>/include/audit_rec.h of the form IA_M_*.

IA_MARK_CLR(ia_audit_rec *, ia_mark_id)
Clear the mark associated with ia_mark_id.

IA_MARK_ISSET(const ia_audit_rec *, field_id)
Test the mark associated with field_id. Returns 1 if the mark is set, and otherwise
returns 0.

IA_MARK_ZERO(ia_audit_rec *)
Clear all marks in this audit record.

A.3 Reading and Writing Audit Records

The following functions are generated by arpcgen to read and write an NIDES audit record.

int rxdr_ia_audit_rec(XDR *, ia_audit_rec *, void *)
int wxdr_ia_audit_rec(XDR *, const ia_audit_rec *, void *)

For general purpose I/O on a UNIX file descriptor, the above XDR structure must, be
initialized and destroyed using these provided functions.

int xdr_fdinit(XDR *, int fd)
void xdr_fdend(XDR *)

July 1994 75

Glossary

Accounting Audit Data The standard UNIX accounting system. Designed primarily for
keeping track of resource utilization (e.g., connection time, CPU usage) for billing
purposes. The accounting records generated are of minimal utility when other forms
of audit data are available (e.g., C2 or BSM).

Agen Audit data generation client process. A single agen process runs on each of the
actively monitored target hosts, translating all the supported, native audit data into
canonical NIDES audit records, and providing them to the arpool process. The UNIX
version of the agen process currently supports three native audit record formats: SunOS
BSM version 1, SunOS C2, and standard UNIX accounting.

Agend Audit data generation daemon process. A single agend process runs on each of the
actively monitored target hosts. Agend accepts and acts upon requests to start or stop
an agen process on a NIDES target host.

Agent A NIDES client process that facilitates communication between NIDES server pro-
cesses.

Arpool One of the core NIDES processes. The arpool process accepts canonical NIDES
audit records from the agen process on all the actively monitored target hosts and
presents the audit records as a single data stream to the analysis components of NIDES.

Archiver One of the core NIDES processes. The archiver process accepts canonical
NIDES audit records from the arpool process and stores them on disk, in a compressed
format, to facilitate future reference when investigating activity that generated alerts.

BSM The most recent auditing system developed for SunOS. The BSM (Basic Security
Module) generates audit records derived from low-level UNIX activity (e.g., read-
ing/writing/assessing/deleting a file, changing directory, running a program).

C2 An older, now obsolete, auditing system developed for SunOS. C2 generates audit records
derived from low-level UNIX activity (e.g., reading/writing/assessing/deleting a file,
changing directory, running a program). Its name is derived from a specific security
rating described in the �Orange Book� (see [6]). It should not be confused with the
generic computer security rating of C2.

Client An active NIDES process. A client process initiates communications/requests with
NIDES server processes.

IDES_ROOT The NIDES environment variable that determines the directory where the
NIDES software resides. This variable must be set prior to running any NIDES soft-
ware.

76 NIDES Software Design Document

Instance An analysis configuration, and the set of profiles associated with that configura-
tion.

Minimum effective n The minimum count of records in the long-term profile that must be
accumulated before the scoring mechanism is considered reliable. It is measure-specific.

Native Audit Record An audit record specific to a given auditing system. Native audit
records are converted by the agen process into a canonical NIDES audit record format
for analysis and storage. Once the audit data are converted, NIDES no longer makes
use of a native audit record. The UNIX version of the agen process currently supports
three native audit record formats: Sun OS BSM version 1, Sun OS C2, and standard
UNIX accounting.

NIDES Next-Generation Intrusion Detection Expert System.

NIDES Audit Record A canonical audit record format capable of representing all sup-
ported native audit record information. NIDES audit records are used for analysis and
storage. Once the audit data are converted, NIDES no longer makes use of a native
audit record.

Persistent Storage NIDES maintains databases of many types under its normal operation.
These databases include an audit record archive, analysis result archive, instances (user
profiles and analysis configuration data) and miscellaneous configuration files (e.g.,
privileged user lists). All of these databases and files are part of the NIDES persistent
storage facility. The persistent storage facility provides a set of library functions to all
NIDES components, allowing them to read and write data to the various databases
and configuration files.

Remote Procedure Call (RPC) An action in which a process calls a procedure that is
executed by another process. The NIDES architecture is composed of many processes
that communicate via RPCs. For example, when the NIDES analysis components
(statistical and rulebased) need an audit record to analyze, both components make an
RPC to the arpool process to ask for the next audit record; the arpool process makes
an RPC in the form of a response providing an audit record to the analysis processes.

Resolver The NIDES analysis process that receives results from the statistical and rule-
based analysis components and determines if an alarm should be reported.

Result A result is generated for every audit record processed by the NIDES analysis com-
ponents. Results are categorized into three levels: safe, warning, and critical. The
level of a result is assigned by the resolver component based on the levels assigned by
the statistical and rulebased analysis components. An NIDES alert is reported when
the resolver determines that a critical-level result should be assigned alert status.

July 1994 77

Sequence Number Numbers assigned by the NIDES agen and arpool processes to the
audit records processed by NIDES. Two sequence numbers are assigned to each audit
record. The agen process assigns a target host sequence number that is unique for
the duration of the current agen process execution on the target host. This number
is referred to as the target sequence number. The arpool process assigns a sequence
number to all audit records it receives; this number is unique across all NIDES target
hosts and monotonically increases for the duration of the current arpool process. This
number, referred to as the audit record sequence number, is used to identify the audit
record when alerts are reported by NIDES. When arpool is first started it begins with en
a sequence number of 0.

Server A passive NIDES process that responds to communications/requests from NIDES
client processes.

Subject The entity for which NIDES maintains profiles and performs anomaly detection.
In the NIDES paradigm, the subject (e.g., a user of the system) initiates actions (e.g.,
file copy) that act on objects (e.g., files).

Target Host A host computer that is monitored (or can be monitored) by NIDES.

Test A batch run of NIDES with archived data, typically done to examine the impact of
parameter changes or establish detection rates

X A de facto graphical user interface standard.

XDR External Data Representation.

78 NIDES Software Design Document

July 1994 79

References

[1] Debra Anderson, Thane Frivold, Ann Tamaru, and Alfonso Valdes. NIDES User Man-
ual/Computer System Operators Manual Beta Release. Report, SRI International,
333 Ravenswood Avenue, Menlo Park, CA 94025, June 1994.

[2] Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Technical report, Carnegie-Mellon University, Pittsburgh, Pennsylvania,
1982.

[3] D. Heller. Motif Programming Manual. O�Reilly and Associates, 632 Petaluma Avenue,
Sebastopol, California 95472, OSF/Motif Version 1.1 edition, September 1991.

[4] R. Jagannathan, T.F. Lunt, F.M. Gilham, A.F. Tamaru, C.F. Jalali, P.G. Neumann,
D.A. Anderson, T.D. Garvey, and J.D. Lowrance. Requirements Specification: Next-
Generation Intrusion Detection Expert System (NIDES). SRI Project 3131 Deliverable,
September 1992. SPA WAR Contract Number N0039-92-C-0015.

[5] Harold S. Javitz and Alfonso Valdes. The NIDES Statistical Component Description and
Justification. Annual report, SRI International, 333 Ravenswood Avenue, Menlo Park,
CA 94025, March 1994.

[6] NCSC. Department of Defense Trusted Computer System Evaluation Criteria (TCSEC).
Report, National Computer Security Center, December 1985.

[7] Network Programming Guide. Sun Microsystems, Inc., Mountain View, California,
Revision A of 27 March, 1990 edition. Part Number 800-3850-10.

