
USTAT: A Real-time Intrusion Detection

Koral Ilgun *

Reliable Software Group

Dept. of Computer Science

University of California

Santa Barbara, CA 93106

System for UNIX

Abstract

This paper presents the design and implementa-
tion of a real-time intrusion detection tool, called lJs-

TAT’, a State Transition Analysis Tool for UNIX. This
is a UNIX-specijic implementation of a generic de-
sign developed by Phillip A. Porras and presented in
[Porr92B] as STAT, State Transition Analysis TOOL
State Transition Analysis is a new approach to repre-
senting computer penetrations. In STAT, a penetra-
tion is identified as a sequence of state changes that
take the computer system from some initial state to a
target compromised state.

In this paper, the development of the jirst USTAT

prototype, which is for SunOS 4.1.1, is discussed. IJs-

TAT makes use of the audit trails that are collected by
the C2 Basic Security Module of Sun OS, and it keeps
track of only those critical actions that must occur for
the successful completion of the penetration. This ap-
proach difiers from oiher rule-based penetration iden-
tification tools that pottern match sequences of audit
records.

1 Introduction

Most computer systems are vulnerable to two dif-
ferent groups of attacks: Insider attacks and outsider
attacks. A system that is known to be secure to an
outsider attack by preventing access from outside can
still be vulnerable to the insider attacks accomplished
by abusive usage of authorized users. Detecting such
abusive usage aa well as attacks by outsiders not only
provides information on damage assessment, but also
helps to prevent future attacks. These attacks are usu-
ally detected by tools referred to as Intrusion Detec-
tion Systems.

The most popular and well-known data for an In-
trusion Detection System is the audit data. An au-
dit trail refers to the (audit) records of all activities
on a system kept in chronological order. Since there
exists a record for each activity on the system, theo-
retically it is possible to manually analyze the audit
data and detect any abnormal activity on the system.

*This research was partially supported by the National Com-

puter Security Center under grant MDA90488-C-6006.

However, the vastness of the audit data provided by
an audit collection system often makes _the manual
analysis impractical. Therefore, an automated audit
data analysis tool is the only solution. Intrusion de-
tection systems are sometimes enhanced versions of
these analysis tools. The following are the most pop-
ular approaches used for intrusion detection.

● Statistical Anomaly Detection

– Threshold Detection

– Profile-Based Anomaly Detection

● Rule-based Anomaly Detection

● Rule-based Penetration Identification

USTAT falls in the last category of the intrusion ‘
detection tools: Rule-based Penetration Identification
Tools. These tools are characterized by their ex-
pert system properties that fire rules when the audit
records indicate illegal activities. Most of the current
intrusion detection tools supplement their anomaly
detection components with rule-based expert system

$
components e.g., IDES [Lunt92], NADIR [Hubb90],
and W&S [acc89]). The different approaches and
their corresponding tools are discussed in detail in
[Porr92A].

Current rule-based penetration identification tools
have several weaknesses that USTAT aims to improve
on. One major weakness is that they use audit records
to represent a penetration scenario and try to pattern
match their rules to the audit records. The represen-
tation of scenarios using audit records is very non-
intuitive. This process requires a person who is expe
rienced in the particular intrusion detection system
and who has in-depth knowledge of the underlying
audit collection mechanism. Also, pattern matching
rules to the audit records gives no flexibility to the
representation of penetrations. That is, for the same
scenario several different audit record sequences might
exist and those minor variations might slip unnoticed.
USTAT overcomes this problem by using a higher-level
audit record independent representation of penetra-
tion scenarios. This feature also makes the creation
and update process of the rule-base easier.

STAT State Transition Analysis Tool) presented
$in [Porr92] introduces a novel idea to represent com-

puter penetrations and provides an expert system

16
1063-7109/93$03.00@1993IEEE

model to detect compromises. STAT makes use of the
audit trails that are provided by the audit collection
mechanisms of the target operating systems.

Garvey and Lunt [Garv91] also proposed a new in-
trusion detection approach called Model-Based Intru-
sion Detection. With this approach they address the
above problems and provide an audit record indepen-
dent technique to represent intrusion scenarios.

USTAT (State Transition Analysis Tool for UNIX),
which is introduced in this paper, is the implementa-
tion of a prototype of STAT for UNIX. USTAT uses the
audit collection mechanism that exists as an add-on
package to SunOS 4.1.1, called C2-BSM (Basic Secu-
rity Module). In the remainder of this paper we refer
to the SunOS 4.1.1 C2 Basic Security Module as the
BSM.

USTAT’S design gives the site security officer (SS0)
the opportunity to monitor, detect and possibly pre-
empt certain activities that would be considered illicit
or that would cause a security risk for the system.

The following section gives an introduction to
the State Transition Analysis approach. Section 3
presents a discussion of the components of USTAT.
Section 4 shows the results of various tests performed
on different aspects of USTAT. The final section gives
conclusion about the research reported in this paper
and provides pointers for future research efforts.

2 Introduction to the state transition

analysis approach

2.1 State and state transitions

USTAT analyzes the audit data by keeping track of
the state changes on the system, where state is defined
as follows [Porr92A].

‘State is the collection of all volatile, perma-
nent and semi-permanent data stores of the
system at a specific time. ”

However, for a given instant in time, it is quite in-
feasible to determine the value of all the data stores
on the system. A close observation of the penetration
scenarios reveals that we actually need only a fraction
of the data stores to represent those scenarios. The at-
tributes we are interested in depend on the particular
scenario.

For instance, we can define one compromised state
as follows. “A user (non-root) is running an interactive
shell with an effective user id equal to root .“ So, the
user can talk to the shell while having root privileges.
That clearly defines a compromised state. However, at
this time, there is no audit record format that informs
the analyzer in such a descriptive manner. Therefore,
we try to obtain more information looking at the his-
tory of the “compromised” state. We try to see how
we have gotten there and we try to answer the follow-
ing questions.

1. Which actions caused the user to gain an interac-
tive shell with root privileges?

2. How are the system attributes affected by these
actions?

The observations made by answering these ques-
tions make state transition analysis a very effective
tool in describing and detecting penetration scenar-
ios. Since the actions are as significant as the states
of the system, the tool is called the state transition
analysis tool rather than state analysis tool.

2.2 Representing penetrations: state
transition diagrams

A state transition diagram is the graphical repre-
sentation of a penetration scenario. Figure 2.1 shows
two major components of a state transition diagram:
Nodes that represent the states and arcs that repre-
sent the actions.

o
Stste

Action

Figure 2.1 State and Action

The idea of the state transition diagrams stems
from a very basic observation of a feature that is com-
mon to all penetrations: All intruders start with lim-
ited access to a system with limited privileges (= Ini-
tial state). After performing some actions they gain
some previously unheld ability (= Final state). This
is illustrated in Figure 2.2.

+-––+
Initial ware Find stake

Figure 2.2 Initial and Final States

So, we can view a penetration as a sequence of ac-
tions that lead from an initial limited access state to
a final compromised state. When we construct a state
transition diagram we use only key activities

● that make a state change on the system,
● that lead to the final state, and
● that best represent the penetration.

It is easy to observe the first two, but the last one
is quite intuitive. There is no clear cut procedure
that can define the construction of state transition di-
agrams,and it is possible that two different persons
can come up with different state transition diagrams
that represent the same penetration scenario. Which
one is the best is difficult to answer.

17

Each state of a state transition diagram consists of
one or more state assertions. In representing penetra-
tion scenarios we discovered that we don’t need any
specific state assertions for the initial state of a pen-
etration scenario. Therefore, all state transition dia-
grams start with a signature action, which acts like
a trigger for the penetration scenario. An example
best illustrates the construction of state transition di-
agrams.

2.3 An example penetration scenario and
its state transition diagram

In this section we give an example penetration sce-
nario that is applicable to SunOS 4.1.1. In the fol-
lowing example, the target fil~, called target, is a se-
tuid shell script with the #!/bin sh mechanism and is

[owned by root. The file that is inked to target starts
with a dash ‘-’. The attacker performs the following
steps.

% in target -x
x -x

The steps of this process can be explained as fol-
lows.

Step-1. The attacker creates a hardlink starting with
a dash ‘-’ to root’s setuid shell script that contains
the #!/bin/sh mechanism.

Step-2. The attacker executes ‘-x’.

Insight: Whenever a hardlink is created? a new di-
rectory entry is created with the target’s original priv-
ileges and ownership information. The target can be
accessed via any link to it. Executing a shell script
containing the #!/bin/sh mechanism invokes a sub-
shell. This subshell becomes interactive (meaning that
the user invoking the shell can talk to it), because the
name of the script starts with a ‘-’. Since in this case
the attacker is executing a setuid file owned by root,
he/she receives an interactive shell with root privi-
leges.

There are two steps involved in this penetration
and each is necessary for the successful completion of
the attack. First we can identify the signature actions:
The first one corresponds to the hardlink action among
USTAT’S action types and the second one is execute.
So far we have the incomplete diagram of Figure 2.3.

hardlink (filel, file2) execute (filel)

Figure 2.3 An Incomplete State Transition
Diagram

Next we identify the state changes accomplished by
these calls. In the final state the attacker gains some

previously unheld ability: At this point, he/she has
an effective user id of root. So, the final state can be
identified as:

not euid = USER

To complete the diagram we should identify the first

i
state S1). In fact we should include every fact that
is use in the first step of the penetration explained
above. The new filename should start with a dash,
followed by any characters:

name (filel) = “-*”

The new file is hardlinked to a root owned setuid
file. So, the new file’s ownership should indicate a user
different than the USER who executed the last signa-
ture action, as given in the following state assertion.

not owner (f ilel) = USER

The file must be a setuid shell script:

permitted (SUID,filel)
shell_ script (f ilel)

Finally, the file should allow execute access
or others

permitted (XGRP,f ilel)
permitted (XOTli, filel)

With these additions the state transition
is completed and it is shown in Figure 2.4.

to group

or

diagram

hsdlink (tilel, Sle2) exeeute (fikd)

Figure 2.4

nsme (131el)= “-*” not euid. USES

not oweer (filel) = USER

permitted (SUID, Slel)

shell.script (Slel)

permitted (XGRP, lilel) or

permitted (X- Slel)

Final State Transition Diagram

For a complete description of the state assertions
used in USTAT, see Section 3.2.2.

3 Ustat

In Section 2.2 we described how a penetration sce-
nario can be represented using state transition dia-
grams. In this section, we explain how USTAT stores
these scenarios and uses them to detect penetrations.
USTAT can be characterized by three basic properties:

. USTAT is a real-time expert system intrusion de-
tection tool,

18

● It employs rule-based analysis on the audit trails
of multi-user computer systems, and

● It searches for known penetrations.

USTAT is designed to be a real-time system. One of
its main features is to attempt to preempt an attack
before any damage is done to the system. This pre-
emption is possible only with real-time analysis. The
major issue in real-time analysis, however, is whether
USTAT will be fast enough to catch up with the au-
dit records when the user load is high. The results of
several tests focusing on this issue are given in Section
4.

USTAT’S ability to detect cooperative attacks, to
detect penetrations, the steps of which may span
more than one user session, and its ability to foresee
an impending compromise distinguish it from other
rule-based penetration identification systems. For in-
stance, the example scenario presented in the previous
section can be performed by two different cooperating
attackers, or by one attacker in two different login ses-
sions. USTAT is able to detect such variations in attack
scenarios. For an in-depth discussion of USTAT’s fea-
tures and its implementation details refer to [Ilgu92].

USTAT consists of the following components.

● The

● The

—

—

● The

● The

preprocessor

knowledge-base

The fact-base

* The fact-base initializer
* The fact-base updater

The rule-base

* The state description table
* The signature action table

inference engine

decision engine

Except for the preprocessor, these components
characterize a typical expert system. USTAT provides
modularity by designing each of these components sep-
arately and interfacing them together. Figure 2.5 illus-
trates the connectivity of the components of USTAT.

3.1 The preprocessor

The audit record preprocessor is responsible for
reading, filtering, mapping and finally passing the
BSM audit records to the inference engine in the for-
mat that is required by USTAT.

3.1.1 Audit collection

Operating systems with NCSC 1 evaluation of C2 or
higher are required to provide audit collection mecha-
nisms. The BSM is designed to be compliant with the

“1Natio~~ c~~puter %CUritYcenter

NCSC requirements for a system at the C2 classifica-
tion. The BSM provides improved security features
over standard UNIX operating systems. It has the
following add-on features to SunOS 4.1.1.

● Shadow password files

● Object reuse

● Device allocation, deallocation

● Audit collection

Among these features, our primary interest is the
audit collection. For more information about the BSM
refer to [Bsm91].

3.1.2 Format of Ustat audit records

The USTAT audit record structure is defined by the
triple:

<SUBJECT, ACTION, OBJECT>

meaning “SUBJECT performs the ACTION on the
OBJECT.” Each of these attributes contains further
fields that are used to reveal as much information as
possible about the particular attribute. The SUB-
JECT is identified by the triple:

<Real User ID, Effective User ID, Group ID>

The ACTION is identified by the triple:

<Action, Time, Process ID>

Finally, the OBJECT is identified by the eight tu-
ple:

<Object Name, Permissions, Owner, Group Owner,
Inode #, Device #, File System ID, Target>

The Object Name is the name of the file identified
with its full path. The Target field is effective only if
the action is Hardlink or Rename. All of the fields in a
USTAT audit record can be obtained directly from the
BSM audit records. For an in-depth discussion of the
BSM features and audit records as regards to USTAT,

refer to [Ilgu92].

3.1.3 Filtering process

There are 239 different events that are audited by
the BSM. Out of these, only 28 events are used by
the preprocessor and mapped onto 10 different USTAT

actions. The inference engine operates using these 10
action types. Table 3.1 lists the 10 different actions
of USTAT along with the BSM event types that are
mapped onto them.

The preprocessor also takes the return value of an
event into account. It filters out all the BSM records
that indicate a Return Value of – 1. This value means
that the call made by the user was not finished suc-
cessfully. It did not make any change to the system
attributes and hence it cannot cause a state transition.

19

u’
INFERENCE

i

~

ENGINE +

t 7

~---- ——-—-———-——-——-—— —i

~

t I EEizEl —
I nPm-k

Figure 2.5 USTAT’S Components

Note: Unlike USTAT, Statistical Anomaly Detec-
tion Systems use the return field to detect browsers
who perform abnormally high numbers of unsuccess-
ful attempts or external attackers who repeatedly fail
to pass logon authentication.

USTAT ActIon 13SM Mvent Types
Read open.r, open.rc, open_rtc,

open_rwc, open-rwtc, open_rt,
open_rw, open-rwt

Write truncate, ftruncate, crest,
open-rwc, open_rwt c, open_rw,
open_rwt, open-rt, open-rtc,
open_w, open.wt, open.wc,
open_wt c

Create mkd m, crest, open-rc,

I I open-rtc, open~rwc, open_r_wtc, I
open_wc, open-wtc, mknod

Delete rmdlr, unhnk
Execute exec, execve
Exit exit
Modify.Owner chown, fchown
Modlf~-Perm chmod. fchmod.
Rename I rename
Hardhnk Il”km i

Table 3.1 USTAT Actions vs. BSM Event Types

One major task of the preprocessor is to provide the
inference engine with a generic audit record format to
aid in portability. However, some action names spe-
cific to the target system need also be included (e.g.,
hardlink). The preprocessor also enables the SS0 to
create the state transition diagrams with the abstrac-
tion of USTAT action names.

One might argue that it is easier for the SS0 to
create the state transition diagram by directly using
the system’s audit records that correspond to the com-
mand line sequence of the attack scenario. This may
be true. Howeve~, with such a state transition dia-
gram small variations to the attack scenario are very
likely to slip unnoticed. USTAT overcomes this prob-
lem by mapping groups of many similar actions onto
single USTAT actions.

3.2 The knowledge-base

Figure 2.5 shows the knowledge-base components
within the dotted lines. The fact-base contains infor-
mation about the objects of the system, and the rule-
base is the rule representation of the state transition
diagrams.

3.2.1 The fact-base

USTAT’S fact-base consists of groups of files or direc-
tories that share certain characteristics that are vul-
nerable to certain types of attack scenarios.

20

Initializing the fact-base for USTAT is done by the
fact-base initializer module of USTAT and by some
additional manual processing. The fact-base updater
consists of those routines that keep the fact-base up-
to-date for the consistent operation of the inference
engine. The current version of the fact-base used by
USTAT is given in Table 3.2.

Table 3.2 USTAT Filesets

The first six of these are used directly in state as-
sertions, whereas the last one is used by the inference
engine to identify variations of scenarios through ref-
erences by hardlinks.

● The files in Fileset #1 should not be accessed via
regular utilities, as they contain sensitive informa-
tion that if read by an ordinary user could com-
promise the system security. In some UNIX sys-
tems these files are left readable by everyone. For
instance, Discolo in [Disc85] illustrates how plain-
text passwords can be obtained from /dev/kmem,
In recognition of this violation and the potential
for similar ones, USTAT makes use of Fileset #1.
These files should only be read by certain sys-
tem files that are identified in Fileset #3. USTAT
makes use of the state transition diagram given
in Figure 3.1 to detect unauthorized references to
the files in Fileset #1.

exrats @cl) resd (filez)

1. not mrsnba (FS3, filel) 1. same_pid

2. manbsr (FSl, file2)

Figure 3.1 A State Transition Diagram

● Similar to Fileset #1, files in Fileset #2 should
be denied write access except by the programs in
Fileset #4. An example to a member of Fileset
#1 is /etc/passwd. This file should not be over-
written by any program, except by the passwd
command. The password program provides legit-
imate write access to the /etc/passwd file. Any

●

●

●

●

●

other write to this file (except by the super-user)
should be identified as a security violation. US-
TAT uses a state transition diagram similar to the
one given in Figure 3.1 to detect unauthorized
writes to the files in Fileset #2.

Some famous attack scenarios consist of mali-
ciously executing a setuid to root 2 program (e.g.
a program that is not a member of Fileset #4)
to perform unauthorized activities on the system
(e. . writing to a file that is a member of Fileset
#$. Such scenarios can be detected by USTAT
since the BSM provides both the effective and real
user id of the attacker.

Fileset #3 consists of the files that are authorized
to read files in Fileset #1. The meaning of autho-
rized does not include being able to. For inst ante,

A
although cat 1) can be used to display the con-
tents of any le as far as permission bits allow, it
should not be defined as authorized to read a file
in Fileset #1.

Fileset #4 consists of those files that are autho-
rized to write on files in Fileset #2. For instance,
the passwd command has legitimate write access
to the /et c/passwd file, can be used by any user,
and therefore should be included in Fileset #4.

Fileset #5 consists of publicly accessible, exe-
cut able system files, which are common subjects
to Trojan Horse attacks. These files should not be
deleted because of denial of service problem, nor
should they be overwritten (except by the system
administrator) because of a possible Trojan horse
implant ation.

The idea of the non-writable system directories
is similar to the idea of non-writable system exe-
cutable. These directories usually consist of pub-
licly executable files and therefore they are sub-
ject to Trojan Horse attacks. If somebody creates
a fake 1sprogram in one of these directories, it is
possible that in the victim’s path, the name of
the target directory comes before the directory
where the actual 1sprogram is located. Therefore
all these directories should be denied write access
unless the access is done by root (or the system
administrator).

In UNIX, one physical file may have several path-
names associated with it. Processes can access
the file by any of these pathnames. In analyzing
penetration scenarios, we noticed that variations
of the scenarios can easily be accomplished by
using different filenames at different steps of the
penetration, while still referring to the same phys-
ical file. In this case the inference engine would
fail in firing the rule of a penetration scenario,
since the object in the next step was not identical
to the object that it was looking for. To overcome

2These *rogaS (or scripts) temporarily ~~ge the ‘Ser’s

effective user id to root. The real user id remains unchanged

and fortunately both id’s are recorded by the BSM.

21

this, USTAT’S fact-base keeps information about
all hardlinks on the target system.

3.2.2 The rule-base

State transition diagrams provide a graphical rep-
resentation of penetration scenarios and their effects
on the system states. The information contained in
these diagrams are stored in two text files referred to
as the State Description Table and the Signature Ac-
tion Table, which store the state assertions and the
signature actions, respectively. The inference engine
uses the information contained in these files to match
the actions of incoming USTAT audit records to the
actions of state transition diagrams.

In the state transition diagrams, each state consists
of one or more state assertions. Each state assertion
consists of one function name and zero or more argu-
ments. The evaluation of a state assertion results in
a true or false value. The not keyword in front of a
state assertion negates the result. A short description
of each type of state assertion follows.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

name (file.var) = file-name
Evaluates true if the file-var matches the filename
given in the right-hand side.

fullname (file-war) = full-path
Evaluates true if the file-var matches the path-
name given in the right-hand side.

owner (file-oar) = user_id
Evaluates true if the owner of file-var is the
user-id.

member (jiZe_set, fi/e_var)
Evaluates true if jile-var is a member of the
jile_set.

euid = user.id
Evaluates true if the effective user id of the sub-
ject of the audit record being processed equals the
user_id.

gid = group-id
Evaluates true if the group id of the subject of the
audit record being processed equals the group_ id.

permitted (perm, jUe_var)
Evaluates true if the permission bit given ss perm
is set in ji/e_var7s permission bits.

located (NWSD, ji/e_var)
Evaluates true, if jile-var is located in any of the
directories listed in the file nwsd.set.

same-user
Evaluates true if the subjects of the last two sig-
nature actions are the same.

same.pid
Evaluates true if the process id’s of the last two
signature actions are the same.

11. shell-cript (jiZe-var)
Evaluates true if the jile-var is a shell_script with
the #!/bin/sh mechanism.

Similarly, the signature actions can be one of the
following. These correspond to the action types used
by the preprocessor.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

3.3

read (ji/e_var)

write (file-var)

create (jiZe_var)

execute (jVe_var)

exit (ji/e-var)

delete (jiZe_var)

modify .owner (fi/e_var)

modify _perm (ji/e-var)

hardlink (jile-vm, jiie-var)

rename (fi/e-var, jile-var)

The inference engine

In this section we describe the operation of the in-
ference engine. The inference engine forms the heart
of the control mechanism. The inference engine does
not “know” what rules and facts should be or could be
in the knowledge-base. For any given inference step,
the inference engine uses all the relevant rules and
facts that are available to it at that time. USTAT’S in-
ference engine uses an event driven, forward chaining
inference scheme [Mart88].

The inference engine uses a structure called the zn-
ference engine table to handle and detect all penetra-
tion scenario instances simultaneously. At any point
in time, this table consists of snapshots of penetra-
tion scenario instances (instantiations) that are not
yet completed on the target system. Each row repre-
sents one instance of a possible penetration scenario.
Each column corresponds to one state of a scenario
and it depicts how far a compromise is from being
achieved. Each row also cent ains information about
the history of the instantiation, such as users involved,
files involved, related audit records, etc. Table 3.3 il-
lustrates the initial configuration of the inference en-
gine table. Assuming n is the number of different state
transition diagrams entered into the state description
table, then there is one row for each state transition
diagram. None of the rows are marked, which means
the initial signature action of each diagram is being
anticipated by the inference engine. Whenever the in-
ference engine detects an audit record that matches
the next action and satisfies the next state of a state
transition diagram, it duplicates the row and “marks”
the corresponding cell on the duplicated row. The rea-

son for duplicating the row is that the original row can
still represent part of another instantiation.

22

To illustrate the manipulation of the table we give
an example that uses a hypothetical state transition
diagram, called STDh. This diagram contains three
signature actions. Suppose that the first signature ac-
tion is creating a file that possesses certain character-
istics, which are given in the first state of the diagram
(State Assertions-l). Also, suppose that the second
signature action is the execution of the file created
in the first step and is followed by the third signa-
ture action, which indicates reading another file on
the system. The state that follows the last signature
action depicts the final compromised state. This is
illustrated in Figure 3.2. From this diagram one can
observe that there may be many executions of jilel by
possibly different users once it has been created.

51 52 53 54 55

1
2

h

n

Table 3.3 Initial inference engine table

The hypothetical state transition diagram (STDh)
corresponds to Row h of the initial inference engine
table.

Action 1: User A creates filel and this satisfies
the state assertions in S1 of STDh.

Result: Row h is duplicated and S1 is marked on
the new row. (See Table 3.4).

& 52 53 54 55
1
2

h

n+l x

Table 3.4 Inference engine table after action 1

At this point there are n + 1 different signature
actions that are being anticipated by the inference en-
gine, one for each row. Two of these are related to
STDh. These are: the creation of another file and the
execution of filel. These two signature actions corre-
spond to the two rows (h) and (n + 1) of Table 3.4,
respectively.

Action 2: User B executes filel and this satisfies
S2 of STDh .

Result: Row n + 1 is duplicated and S2 is marked
on the new row. But, this result should not affect row
n + 1 since the same file can be executed by another
user. The result of the second action is illustrated in
Table 3.5.

Table

51 52 53 54 &i

1

h

n
n+ 1 x
n+2 x x

3.5 Inference engine table after action 2

Action 3: User B reads file2 and this satisfies S3
of STDh .

Result: Since S3 is the final state of STDh a com-
promise has been achieved. No new row is added to
the table. So, as a result the table will still look like
Table 3.5. However, the compromise is reported to the
decision engine.

A row is deleted from the table only when the corre-
sponding state assertions no lon er hold. For example,

frow n + 1 is deleted only when lel is deleted or when
the state assertions in S1 of STDh no longer hold for
rown+l.

3.4 The decision engine

The decision engine is responsible for informing the
SS0 about the results of the inference engine activi-
ties. The output of the decision engine could be one or
more of the following actions, which are ranked from
the simplest to the most complicated.

b

●

●

●

Inform the SS0 that a compromise has been
achieved.

Inform the SS0 whenever a state of any instance
of the scenarios has been satisfied.

Suggest possible action to the SS0 to preempt a
state transition that can lead to a compromised
state.

Play an active role in preempting the attack.

The decision engine implemented for the USTAT pro-
totype performs all of the above except the last one.

The decision engine employs a structure called the
decision table, which contains a decision message for
each state of a state transition diagram. Whenever
the decision engine is notified by the inference engine
about a state change it displays various information
to the console of the machine running USTAT for the
Sso.

23

crsate (filel) execute (filel) resd (file2)

●

●

●

●

State Assertions-l State Assertions-2 State Assertions-3

Figure 3.2 STDh: A Hypothetical State Transition Diagram

It displays the number of the state transition di-
agram for which this state change has occurred.

It displays the message in the decision table that
corresponds to the last satisfied state.

It displays all the filenames that were involved in
this instance of the scenario.

It displays the real user id and the effective user
id of the user who performed the last signature
action for this instant iat ion.

With this data, the SS0 has enough information to
either take preemptive action, or to take precautions
to prevent further attacks.

3.5 Out of scope

No intrusion detection tool is meant to be a catch-
all tool for intrusions. They all have weaknesses and
strengths. The following is a list of threats that are
out of scope for the analysis of USTAT.

●

●

●

●

Manipulation of components outside the system’s
execution domain, e.g., wiretapping.

Most denial of service attacks, e.g., excessive CPU
utilization.

Variations from patterns of use, e.g., user A logs
on as user B and accesses the files that user B
doesn’t usually access.

Failed login attempts, failed file access attempts.

The above list consists of those attacks that are ei-
ther not recorded by the audit collection mechanism,
or that cannot be represented by using a state tran-
sition diagram. With this in mind, USTAT will best
perform as a component in a larger intrusion detec-
tion system by cooperating with an anomaly detec-
tor, since the weakness of one is the strength of the
other. For instance, an attacker trying to break into a
user’s account by using the login program repeatedly
will generate many audit records with a fail indicator.
This high number of unsuccessful attempts is expected
to be caught by a statistical anomaly detector. Even
if the attacker finally succeeds, the break-in will not
be detected by USTAT.

4 Testing Ustat

In this part we give the test results of running US-
TAT. First we give the results of the functional tests
and then the results of the performance tests. All tests
were run on a SPARCst ation 1.

4.1 Functional testing

We performed functional tests on three different
features of USTAT.

1.

2.

3.

4.2

The rules of the state transition diagrams. Do all
of the rules work when their penetration scenar-
ios are performed? Preliminary tests showed that
all attack scenarios defined in the rule-base are
detected by USTAT.

The hardlink information. Do the rules work
when the attack is performed using the hardlinks?
For instance, the first part of a scenario can be
performed by one file, whereas the second part
can be performed by a hardlink to the first file.
Test results showed that variations to the scenar-
i~s;::formed through hardlinks are detected by

Cooperative attacks. Do the rules work if parts of
a scenario are performed by different attackers?
The example scenario given in section 2.4.3 al-
lows two attackers to cooperate. USTAT was able
to detect this attack, since for USTAT it makes
no difference whether this attack is performed by
only one user or two users.

Performance testing

The purpose of the performance testing was to have
an idea about the processing speed of USTAT and also
about the change in the performance of USTAT when
there are other processes running on the same sy5
tern. We tested USTAT with a combination of audit
intensive 3 and cpu intensive processes. ps was run
periodically to obtain the cpu and disk utilization of
the processes. It is obvious that ps also used some cpu
cycles and therefore affected the test results.

In these tests, USTAT was processing audit data
that had been collected prior to the test. The audit

3audit intensive: These processes continuously perform a

large amount of system calls that keep the audit daemon and

hence the disk where the audit records are written, continuously

busy.

24

data was generated by one user occasionally by a few
Lusers) logging on the target mac inc. It could be con-

sidered a batch-mode execution? but it became real-
time when USTAT caught up with the current audit
data.

Although there are many combinations of differ-
ent types of processes possible, we limited our perfor-
mance tests to a small number of typical processes.
The following were the processes that were involved
in the test.

USTAT: Both CPUand 1/0 (primarily input) in-
tensive. USTAT itself is not audited since other-
wise it would result in a circular action.

Crack: A CPU intensive program that runs en-
cryption routines to guess passwords.

find: An audit intensive system program, when

i
run on a large filesystem e.g., find / -print) cre-
ates a huge amount of au it data.

Audit daemon (auditdl: This mocess becomes ac-
tive whenever BSM is ‘installe~ on the target ma-
chine. It controls the generation and location of
the audit trail files. It is a highly 1/0 intensive
(primarily output) process. The audit daemon
was in the test by default, since USTAT and the
audit daemon were running on the same machine.

For each test case, we illustrate one table and one
or more graphs associated with the test case. The
table lists the processes involved in the test run on
one column. Next column indicates the amount of
cpu time (min:sec) used by each process, and the third
column indicates the percentage of cpu time used by
each process. The graphs display the cpu usage of
selected processes over time.

4.2.1 Test case 1: Ustat only

In this first test we tested USTAT’S performance
while no other major processes were running. US-
TAT processed the audit data for about 40 minutes.
After this point it became idle and waited for more
audit data. The graph in Figure 4.1 displays USTAT’S
cpu usage over time. USTAT used about 42 Yoof CPU
during processing and 38 % when idle. The CPUuti-
lization during this idle period seems high. More than
30 minutes (more than 50 %) of CPU time was idle
even during USTAT’S processing (See Table 4.1). This
indicates that for half its runtime USTAT was waiting
for the 1/0 to be completed.

Process Cpu time Percent age
Audit d 005 01
USTAT 32:17 45
Idle 38:56 I 55
Tot al :.

4.2.2 Test case 2: Ustat and crack

In this test run, the cpu was rarely idle. Because
both are user processes, USTAT and crack competed
for cpu time. Compared to the previous test csse, in
this one crack seemed to fill the unused cpu cycles (see
crack’s cpu usage in Table 4.2). The test results also
showed that the cpu utilization of USTAT dropped by
5 %. Figures 4.2 and 4.3 display the cpu usages of
USTAT and crack over time.

Process Cpu time Percentage
Aud~td O06 03
USTAT 14:51 43
Crack 14:01 40
Idle 5:58 17
Tot al

Table 4.2 Cpu usages of Auditd, USTAT and Crack

4.2.3 Test case 3: Ustat and find

Being an audit intensive process, find made a
tremendous amount of calls that pushed the audit dae-
mon to its limit. Since the audit daemon runs as a root
process it caused a considerable slow-down of the user
processes. In addition, the processes that required
disk 1/0 from the same disk that was used by the audit
daemon, were very likely to hang. For instance, an 1s
command on the audit data directory hung. Since US-
TAT is also a user process requiring disk 1/0 from the
audit disk, it hung after a while (See Graph of Figure
4.6). The only solution to this hang was to terminate
the execution of find, thereby relieving the audit dae-
mon and giving USTAT some opportunity to read the
audit data. In this test, USTAT showed more than a
50 % slow-down in processing speed. More than 60 %
of cpu time was idle, since USTAT didn’t have much
opportunist y to process audit data (see Table 4.3). Fig-
ures 4.4 through 4.6 display the cpu usages of auditd,
find and USTAT over time.

Process Ic pu time I Percent age
Audltd 6:16 I 12
USTAT 10:24 19

find 2:36
Idle 34:14 62,
Tot al 53:30 I 100 /

Table 4.3 Cpu usages of Auditd, USTAT and find

Table 4.1 CPU usages 4 of auditd and USTAT

4Idle includes other processes

25

% Cpu

50 1

/

o Time (Each grid 2E’10 rein)

Figure 4.1 USTAT’S cpu usage in running USTAT

% Cpu

50

/ %
1 Vw

1

v,

0 Time (Each grid = 10 rein)

Figure 4.2 USTAT’S cpu usage in USTAT and Crack

% Cpu.

50 A
l\

A A

)1

v (
V

o Time (Each grid ~ 10 rein)

Figure 4.3 Crack’s cpu usage in USTAT and Crack

% Cpu

50

/+”\ n
A.

/ \
o Time (Each grid = 10 rein)

Figure 4.4 Auditd’s cpu usage in USTAT and find

% Cpu

50

0 Time (Each grid ~ 10 rein)

Figure 4.5 Find’s cpu usage in USTAT and find

% Cpu

50

h L \
IL

n.

o Time (Each grid = 10 rein)

Figure 4.6 USTAT’S cpu usage in USTAT and find

26

The following lists some factors that might affect
the speed of USTAT.

1.

2.

3.

4.

5.

5

Size of hardlink information.

Number of rules in the rule-base.

Cpu load on the machine where USTAT is running:
Other users, processes, the audit daemon, etc.

Load of the disk on which the audit trails are
recorded.

The network traffic load if the audit data is sent
over the network.

Conclusion and future work

In this final section, we first give some comments
about the overall results of the test runs. Next, we
give some topics to work on in the future to improve
the efficiency of USTAT and broaden its scope.

5.1 Remarks about the tests

In running the tests presented in the previous sec-
tion: we tried to observe both the effectiveness and the
efficiency of USTAT. These tests were meant to be a
feasibility check rather than to be exhaustive. In fact,
the actual performance of USTAT will be more appar-
ent after running it on different target systems with
different configurations.

So far, the limiting factor appears to be the
throughput of the disk that is extensively used by both
USTAT and the audit daemon. Cpu intensive processes
that run on the same machine as USTAT have little af-
fect on the performance of USTAT. The tests showed
that if the cpu intensive process is a user process (not
a root process), approximately a 13 Yoslowdown is ex-
perienced in USTAT’S processing speed (see Test Case
2 in Section 4.2). Among the possibilities to increase
the performance of USTAT are:

●

●

●

●

Runnin USTAT on a dedicated machine (IDES
f[Lunt92 uses this approach),

A periodic audit filesystem switch for the audit
daemon, so that USTAT will not starve while wait-
ing for the disk 1/0 (see Test Case 3, in Section
4.2).

Running USTAT and the audit daemon on a sys-
tem with better performance, (faster disk drives,
etc.).

If USTAT and the audit daemon need to be run on
the same computer, USTAT can be run as a higher
priority process. This would speed up USTAT’S
processing, but there is still a problem associated
with this. As in the test case 3 in Section 4.2,
the audit daemon is already falling behind real-
time when there are many events to be recorded.
Increasing USTAT’S priority would likely cause the
audit daemon to fall even further behind.

As indicated by test case 1 in Section 4.2, the cpu
utilization of USTAT when it is idle (waiting for more

4
audit records is not much different from when it is
processing. his is because USTAT is continuously re-
opening the audit data file and trying to read new
data. Instead of making this continuous, we could add
a delay between each reopen, so that a high slow-down
in the speed of other processes is not experienced.

5.2

●

b

●

Future work

Performance in a larger intrusion detection sys-
tem:

It would be very informative to see the perfor-
mance of the overall intrudon detection system if
we test USTAT as a component of a larger intru-
sion detection system that consists of USTAT and
a statistical anomaly detector (such as IDES).

Interactive interface:

Currently, after the USTAT program is started,
there is no other input to USTAT except the audit
data. Another module can be added to USTAT
to provide more interaction between the SS0 and
USTAT. One desirable feature of this interface
would be the capability of adding and removing
rules to the rule-base while USTAT is running.

Also, all state assertions of USTAT are currently
built-in. The rule-base can only use those pre-
determined state assertions. To add modularity,
the SS0 might be allowed to define new assertions
by writing small programs once the interface is
defined. This feature is expected to be added to
future versions of USTAT.

Multiple hosts:

One of our next efforts will be to run USTAT on
the audit data collected by several hosts. In this
case, the following issues need to be considered.
When the BSM is installed on multiple hosts,
each host generates its own audit trail. USTAT’S
preprocessor is designed to operate on a singl~,
chronological audit trail. Therefore, the audit
trails need to be merged into one chronological
audit trail and then processed by USTAT’S pre-
processor. The auditreduce command installed
with the BSM maybe used to perform this merge.
(See [Bsm91] or the auditreduce(8) man pages for
more information about auditreduce). Also, all
hosts to be audited must mount their filesystems
at the same mountpoints to assure consistency in
filenames. There will be some files that will have
identical names, but in fact correspond to differ-
ent physical files, such as the files in /usr/bin. In
our analysis, we used the full pathnames to iden-
tify files. However, when performing the analysis
for multiple hosts, device and inode numbers of
files will also need to be used.

27

USTAT’s security:

The security of USTAT and the audit collection
mechanism is not addressed in this prototype im-
plementation. The following issues come to mind
regarding the security of USTAT. Is there any way
for an attacker to become a clandestine user? Can
the attacker disable the audit mechanism? For
example, in the test cases that involved audit in-
tensive processes (such as find), we encountered
a considerable amount of delay in the audit dae
men’s recording time. In this case a malicious
user could run an audit intensive process to keep
the audit daemon behind real-time, penetrate the
system and disable the audit daemon before be-
ing detected. It might also be desirable to have
dedicated audit disks so that the attacker does
not fill the disk space or does not keep the audit
disk busy.

Finally, by implementing USTAT the conceptual
soundness and functional capabilities of the State
Transition Analysis model have been validated, The
author hopes that this effort will be followed by more
research to serve the area of intrusion detection.

Acknowledgments

First, I wish to thank to my advisor, Prof. Richard
A. Kemmerer, for his keen interest and support in this
project and for proofreading this paper. I also thank
Phillip A. Porras, who developed the State Transition
Analysis approach and provided many helpful com-
ments for the implement ation of USTAT.

References

[Bsm91] Sun Microsystems, Inc., SunOS Release
4.1.1. C2-BSM Patch, Revision A, 2550 Garcia
Ave, Mountain View, CA 94043, Dec. 15, 1991.

[Disc85] A. V. Discolo, “4.2 BSD UNIX Security,”
Computer Science Dept., University of Califorma,
Santa Barbara, Apr. 1985.

[Garv91] T. D. Garvey and T. F. Lunt, “Model-based
Intrusion Detection,” Proceedings of the 14th Na-
tional Computer Security Conference, Baltimore,
MD, Oct. 1991.

[Hubb90] B. Hubbard, T. Haley, N. McAuliffe, L.
Schaefer, N. Kelem, D. Wolcott, R. Feiertag and
M. Schaeffer, “Computer System Intrusion Detec-
tion,” Trusted Information Systems, Inc., RADC-
TR-90-413, Final Technical Report, Dec. 1990.

[Lunt92] T. F. Lunt, R. Jagannathan, R. Lee, S. List-
garten, D. L. Edwards, P. G. Neumann? H. S.
Javitz and A. Valdes “A Real-time Intrusion De-
tection Expert System (IDES)”, SRI Technical Re-
port, Feb. 28, 1992.

[Ma~:8~~~~ Martin and S. Oxman. Building Expert
“ A Tutorial, Englewood Cliffs, N. J.,

Prentic~Hall, 1988.

[Porr92A] P. A. Porras, “STAT: A State Transition
Analysis Tool for Intrusion Detection,” Master’s
Thesis, Computer Science Dept., University of
California, Santa Barbara, July 1992.

[Porr92B] P. A. Porras and R. A. Kemmerer, “Pen-
etration State Transition Analysis A Rule-Based
Intrusion Detection Approach,” Proceedings of the
Eighth Annual Computer Security Applications
Conference, San Antonio, Texas, Dec. 1992.

[Vacc89] H. S. Vaccaro and G. E. Liepins, “Detection
of Anomalous Computer Session Activity,” Pro-
ceedings of the IEEE Symposium on Research in
Security and Privacy, Oakland, CA, pp. 280-289,
May 1989.

[Ilgu92] K. Ilgun, “USTAT: A Real-time Intrusion
Detection System for UNIX,” Master’s Thesis,
Computer Science Dept., Umversity of California,
Santa Barbara, Nov. 1992.

28

